Organelle transport: a park-and-ride system for melanosomes.

Curr Biol

Abteilung Zellbiologie and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany.

Published: December 2003

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2003.11.014DOI Listing

Publication Analysis

Top Keywords

organelle transport
4
transport park-and-ride
4
park-and-ride system
4
system melanosomes
4
organelle
1
park-and-ride
1
system
1
melanosomes
1

Similar Publications

Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable.

View Article and Find Full Text PDF

mRNA export factors store nascent transcripts within nuclear speckles as an adaptive response to transient global inhibition of transcription.

Mol Cell

January 2025

Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.

View Article and Find Full Text PDF

RpH-ILV: Probe for lysosomal pH and acute LLOMe-induced membrane permeabilization in cell lines and .

Sci Adv

January 2025

Department of Biochemistry Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.

Lysosomal pH dysregulation is a critical element of the pathophysiology of neurodegenerative diseases, cancers, and lysosomal storage disorders (LSDs). To study the role of lysosomes in pathophysiology, probes to analyze lysosomal size, positioning, and pH are indispensable tools. Here, we developed and characterized a ratiometric genetically encoded lysosomal pH probe, RpH-ILV, targeted to a subpopulation of lysosomal intraluminal vesicles.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shenzhen Bay Laboratory, Shenzhen, Guandong, China.

Background: The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. We wanted to explore the interactome of STING on the organelles during its trafficking route and to understand the regulatory network of STING signaling.

View Article and Find Full Text PDF

Background: Mitochondria are organelles where energy production takes place via oxidative phosphorylation, thus mitochondrial function influences the organs with large energy consumption, such as the brain. Mitochondria contain their own circular genome (mtDNA), which encodes essential proteins/RNAs involved in oxidative phosphorylation. The maternal inheritance of mtDNA, combined with a higher risk of Alzheimer's disease (AD) observed in females, suggest mtDNA may have a role in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!