The first transformation of aliphatic alpha,beta-epoxyamides into alpha-hydroxyamides.

Org Lett

Departamento de Química Orgánica e Inorgánica, Facultad de Química Universidad de Oviedo, Julián Clavería 8, 33071 Oviedo, Spain.

Published: December 2003

A general synthesis of aliphatic alpha-hydroxyamides with total regioselectivity by a reductive cleaveage of the C(beta)-O bond of aliphatic alpha,beta-epoxyamides, promoted by samarium diiodide and MeOH, is described. The treatment of enantiopure aliphatic alpha,beta-epoxyamides afforded enantiomerically enriched aliphatic alpha-hydroxyamides. A radical mechanism has been proposed to explain this reaction. [reaction: see text]

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol035757kDOI Listing

Publication Analysis

Top Keywords

aliphatic alphabeta-epoxyamides
12
aliphatic alpha-hydroxyamides
8
transformation aliphatic
4
alphabeta-epoxyamides alpha-hydroxyamides
4
alpha-hydroxyamides general
4
general synthesis
4
aliphatic
4
synthesis aliphatic
4
alpha-hydroxyamides total
4
total regioselectivity
4

Similar Publications

Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.

View Article and Find Full Text PDF

Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.

View Article and Find Full Text PDF

Investigating 3-CMC metabolism: Insights from liver microsomes and postmortem biological matrix.

Forensic Sci Int

January 2025

Laboratoire de Pharmacologie - Toxicologie, CHU de Saint-Etienne, Saint-Etienne, France; INSERM, UMR 1059, Dysfonction Vasculaire et de l'Hémostase, Université de Lyon, Saint-Etienne, France. Electronic address:

3-Chloromethcathinone (3-CMC) is a synthetic cathinone that has been identified as a new psychoactive substance (NPS) by the European Monitoring Centre for Drugs and Drug Addiction. Despite its increasing prevalence in the recreational drug market since 2014, scientific literature on 3-CMC remains limited. This study employed a multi-step approach to investigate 3-CMC metabolism.

View Article and Find Full Text PDF

Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds.

Science

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.

View Article and Find Full Text PDF

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!