The water balance allows the calculation of deep drainage from other components of the hydrological cycle. Deep drainage has been linked to outbreaks of dryland and irrigated salinity. Until recently, deep drainage was not considered to be an issue on the alluvial plains of the Northern Murray-Darling Basin. Recent simulation studies and calculations using the water balance suggest that substantial deep drainage occurs under irrigated agriculture. However, these estimates have large uncertainties due to possible errors in measurement, calculation and due to spatial variability. On a catchment scale the relative area under a certain land use as well as the connection to local groundwater and the influence of anomalies such as prior streams needs to be considered. This paper discusses the current state of knowledge on the water balance in the Northern Murray-Darling Basin and highlights the need for a concentrated effort to measure all the components of the water balance in this area, as well as the effect on shallow groundwater quality and levels.
Download full-text PDF |
Source |
---|
Sci Total Environ
January 2025
Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France. Electronic address:
Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.
View Article and Find Full Text PDFPlacenta
December 2024
Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Faculdade de Medicina Veterinária da Universidade Lusófona e Instituto Politécnico da Lusofonia, COFAC - Cooperativa de Formação e Animação Cultural, C.R.L., Campo Grande 376, 1749-024, Lisboa, Portugal; Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal. Electronic address:
Background And Aim: Pregnancy after the age of 35 is correlated with an increased risk of impaired placentation and the development of pregnancy-associated complications. Changes in uterine redox balance seem to play a role in these settings. In this work, we hypothesized that local redox dysregulation impacts the placenta metabolic profile.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Materials Science and Engineering, Analysis and Testing Research Center, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Information Technology Management, Faculty of Management Technology and Information System, Port Said University, Port Said, 42526, Egypt.
The Internet of Things (IoTs) has revolutionized cities, enabling them to become smarter. IoTs play an important role in monitoring the traffic cameras, roads, smart farming, connected vehicles, air quality, water level, humidity, and carbon dioxide pollution levels in city buildings. One of the major challenges of smart cities is the cyber threat to sensitive data.
View Article and Find Full Text PDFACS Omega
December 2024
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!