Replacement of damaged cells is a promising approach for treatment of age-related macular degeneration (AMD) and retinitis pigmentosa (RP); however, availability of donor tissue for transplantation remains a major obstacle. Key factors for successful engineering of a tissue include the identification of a neural cell line that is: homogeneous but can be expanded to give rise to multiple cells types; is nontumorigenic, yet capable of secreting neurotrophic factors; and is able to form three-dimensional (3D), differentiated structures. The goal of this study was to test the feasibility of tissue engineering from a multipotential human retinal cell line using a NASA-developed bioreactor. A multipotential human retinal precursor cell line was used to generate 3D structures. In addition, retinal pigment epithelium (RPE) cells were cocultured with neural cells to determine if 3D retinal structures could be generated in the bioreactor with cells grown on laminin-coated cytodex 3 beads. Cell growth, morphology, and differentiation were monitored by light and scanning electron microscopy, Western blot analysis, and analysis of glucose use and lactate production. The neuronal retinal precursor cell line cultured in a bioreactor gave rise to most retinal cell types seen in monolayer culture. They formed composite structures with cell-covered beads associated with one another in a tissue-like array. The beginning of layering and/or separation of cell types was observed. The neuronal cell types previously seen in monolayer cultures were also seen in the bioreactor. Some of the retinal cells differentiate into photoreceptors in the bioreactor with well-developed outer segment-like structures, a process that is critical for retinal function. Moreover, the neuronal cells that were generated resembled their in vivo phenotype more closely than those grown under other conditions. Outer segments were almost never seen in the monolayer cultures, even in the presence of photoreceptor-inducing growth factors such as basic fibroblast growth factor (bFGF) and transforming growth factor (TGF-alpha). Muller cells were occasionally seen when retinal, RPE cells were cocultured with retinal cells in the bioreactor. These have never been seen in this retinal cell line before. Cells grown in the bioreactor expressed several proteins specific for the retinal cell types: opsin, protein kinase C-alpha, dopamine receptor D4, tyrosine hydroxylase, and calbindin.

Download full-text PDF

Source
http://dx.doi.org/10.3727/000000003108747334DOI Listing

Publication Analysis

Top Keywords

retinal cell
20
cell types
16
retinal
13
human retinal
12
cell
11
cells
11
bioreactor
8
multipotential human
8
retinal precursor
8
precursor cell
8

Similar Publications

Significance: Previous evidence showed that transient receptor potential vanilloid 4 (TRPV4) inhibition was protective of retinal ganglion cell (RGC) loss after chronic intraocular pressure (IOP) elevation in young animals. However, the role of TRPV4 in mechanosensing IOP changes in the aging eye is not well understood.

Purpose: This study compared the recovery of retinal function and structure after acute IOP elevation in 3- and 12-month-old mouse eyes with and without TRPV4 inhibition.

View Article and Find Full Text PDF

Retina-on-chip: engineering functional models of the human retina using organ-on-chip technology.

Lab Chip

January 2025

Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.

The retina is a complex and highly metabolic tissue in the back of the eye essential for human vision. Retinal diseases can lead to loss of vision in early and late stages of life, significantly affecting patients' quality of life. Due to its accessibility for surgical interventions and its isolated nature, the retina is an attractive target for novel genetic therapies and stem cell-based regenerative medicine.

View Article and Find Full Text PDF

Introduction: Resveratrol, a polyphenolic compound commonly found in natural plants and fruits, exhibits potential in preventing optic nerve damage in glaucoma, as indicated by several animal studies. However, there is presently a dearth of relevant evidence available for comprehensive summarization.

Methods: In this study, we conducted an extensive search across 7 electronic databases, encompassing all pertinent animal studies for a systematic review and meta-analysis.

View Article and Find Full Text PDF

Report of a Rare Syndromic Retinal Dystrophy: Asphyxiating Thoracic Dystrophy (Jeune Syndrome).

Turk J Ophthalmol

January 2025

İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Ophthalmology, İstanbul, Türkiye.

Jeune syndrome (JS), first described by Jeune as asphyxiating thoracic dystrophy, is an autosomal recessive osteochondrodysplasia with characteristic skeletal abnormalities and variable renal, hepatic, pancreatic, and ocular complications. Approximately 1 in every 100,000 to 130,000 babies is born with JS. Most patients with JS have respiratory distress due to inadequate lung development and many lose their lives due to respiratory failure.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!