The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.

Phys Med Biol

Hamilton Regional Cancer Centre, McMaster University, 699 Concession Street, Hamilton, Ontario, L8V 5C2, Canada.

Published: November 2003

The possibility of using spatially resolved fluorescence and reflectance measurements to recover tissue optical properties, fluorophore concentration and the thickness of a superficial layer in a two-layer geometry was investigated. A diffusion theory model was used to fit reflectance and fluorescence data generated using Monte Carlo simulations or experimentally obtained using tissue-simulating phantoms. Initial analysis fitting diffusion theory generated data suggested that it should be possible to recover all parameters from a single set of spatially resolved fluorescence and reflectance measurements. However, when Monte Carlo or experimental data were fitted the results were less impressive. Overall, it was shown that there is a strong coupling between interface depth, fluorophore concentration and tissue absorption, especially at larger depths. The recovery of all input parameters from a single set of spatially resolved measurements was limited to interface depths less than 3 mm, which is a reasonable range for measuring fluorophore in skin. When the tissue optical properties and fluorophore concentrations were known, then the interface depth could be monitored with good accuracy in simulated serial measurements. These results may also point to deficiencies in the diffusion theory model that introduce significant errors in the fitted results.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/48/21/001DOI Listing

Publication Analysis

Top Keywords

spatially resolved
16
resolved fluorescence
12
fluorescence reflectance
12
interface depth
12
diffusion theory
12
reflectance measurements
8
tissue optical
8
optical properties
8
properties fluorophore
8
fluorophore concentration
8

Similar Publications

Sensorimotor adaptation reveals systematic biases in 3D perception.

Sci Rep

January 2025

Brown University, Cognitive and Psychological Sciences, Providence, 02912, USA.

The existence of biases in visual perception and their impact on visually guided actions has long been a fundamental yet unresolved question. Evidence revealing perceptual or visuomotor biases has typically been disregarded because such biases in spatial judgments can often be attributed to experimental measurement confounds. To resolve this controversy, we leveraged the visuomotor system's adaptation mechanism - triggered only by a discrepancy between visual estimates and sensory feedback - to directly indicate whether systematic errors in perceptual and visuomotor spatial judgments exist.

View Article and Find Full Text PDF

Traditional cell culture methods face significant limitations in monitoring cell secretions with spatial and temporal precision. Advanced microsystems incorporating biosensors have been developed to address these challenges, but they tend to lack versatility, and their complexity, along with the requirement for specialized equipment, limits their broader adoption. CellStudio offers an innovative, user-friendly solution that exploits Printing and Vacuum Lithography combined with bead-based assays to create modular and tunable cell patterns surrounded by biosensors.

View Article and Find Full Text PDF

Crosslinked thermosets are highly durable materials, but overcoming their petrochemical origins and inability to be recycled poses a grand challenge. Many strategies to access crosslinked polymers that are bioderived or degradable-by-design have been proposed, but they require several resource-intensive synthesis and purification steps and are not yet feasible alternatives to conventional consumer materials. Here we present a modular, one-pot synthesis of degradable thermosets from the commercially available, biosourced monomer 2,3-dihydrofuran (DHF).

View Article and Find Full Text PDF

The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.

View Article and Find Full Text PDF

Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy.

NPJ Biofilms Microbiomes

January 2025

Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.

Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!