Vacuum-assist venous drainage (VAVD) can increase venous blood return during cardiopulmonary bypass (CPB) procedures. However, the negative pressure created in the closed cardiotomy reservoir can be transmitted to the oxygenator if a nonocclusive or centrifugal arterial pump is used, resulting in bubble transgression (BT) from the gas to blood compartment of the oxygenator. We analyzed the vacuum pressure required to produce BT using an in vitro circuit including successively a closed reservoir, a pump (centrifugal or roller), and an oxygenator. A constant hydrostatic pressure was maintained onto the oxygenator. Vacuum was applied on the cardiotomy reservoir, progressively increasing negative pressure from 0 to -80 mmHg and monitoring BT with a bubble detector. Six different oxygenators were compared. A partially occlusive roller pump and a centrifugal pump were compared to a control, which was without any pump. A mean negative pressure of -53 +/- 7 mmHg was necessary to produce BT in all the oxygenators in the absence of a pump. The presence of a centrifugal pump between the reservoir and the oxygenator significantly increased the negative pressure required to produce BT compared to the control (-67 +/- 7 mmHg, p < .05). No bubbles were detected using the roller pump (> -80 mmHg needed for BT), thus statistically significant when compared to the centrifugal pump (p < .05). The centrifugal pump offers significant resistance to BT but not as much compared to the roller pump, though BT cannot be prevented if the pump is turned off while the vacuum remains on the reservoir. Therefore, VAVD is a safe technique as long as the perfusionist stops the vacuum when the arterial pump is no longer in use.

Download full-text PDF

Source

Publication Analysis

Top Keywords

negative pressure
16
centrifugal pump
16
pump
13
pump centrifugal
12
roller pump
12
vacuum-assist venous
8
venous drainage
8
cardiopulmonary bypass
8
cardiotomy reservoir
8
arterial pump
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!