Gas-phase H/D exchange is widely used for characterizing the structure of ions. However, many structural parameters that affect the rate of H/D exchange are poorly understood, which complicates the interpretation of experimental data. Here, the effects of sodium ion adduction on the rate of H/D exchange with D2O for a series of peptides and peptide dimers with varying numbers of acidic residues are described. The maximum number of sodium ion adducts that can be accommodated by the peptides and peptide dimers in this study is N + 1, where N is the number of free carboxylic acid groups. The formation of methyl-esters at all carboxylic acid groups, or the replacement of all the acidic hydrogens with sodium ions, effectively shuts down H/D exchange with D2O. In contrast, both the rate and the extent of H/D exchange with D2O are increased for most of the peptides and peptide dimers by the adduction of an intermediate number of sodium ions. These results are consistent with the H/D exchange occurring via a salt-bridge mechanism and show that the presence of two carboxylic acid groups is much better than one. The results with peptide dimers also indicate that surface accessibility may not be a dominant factor in the extent of H/D exchange for these ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1343451 | PMC |
http://dx.doi.org/10.1016/j.jasms.2003.08.005 | DOI Listing |
Chemphyschem
January 2025
Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt, Germany.
The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
The reaction coefficient for hydrogen/deuterium (H/D) exchange and the diffusion of hydrated excess protons within amorphous solid water (ASW) are characterized as a function of temperature. For these experiments, water films are deposited on a Pt(111) substrate at 108 K, and reactions with pre-adsorbed hydrogen atoms produce hydrated protons. Upon heating, protons diffuse within the water, and H/D exchange occurs when they encounter D2O probe molecules deposited in the films.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of chemistry, University of California, Riverside, Riverside, CA, 92521, USA.
Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, M=13.3 kDa, Đ=2.4,
Chemistry
December 2024
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
Deuterated molecules are of growing interest because of the specific characteristics of deuterium, such as stronger C-D bonds being stronger than C-H bonds. Polyethylene glycols (PEGs) are widely utilized in scientific fields (e. g.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!