Neurochemical coding of myenteric neurones in the human gastric fundus.

Neurogastroenterol Motil

INSERM U 539, Place Alexis Ricordeau, Nantes, France CIC-INSERM, Place Alexis Ricordeau, Nantes, France.

Published: December 2003

The major functions of the stomach are under the control of the enteric nervous system (ENS), but the neuronal circuits involved in this control are largely unknown in humans. Enteric neurones can be characterized by their neuromediator or marker content, i.e. by neurochemical coding. The purpose of this study was to characterize the presence and co-localization of neurotransmitters in myenteric neurones of the human gastric fundus. Choline acetyltransferase (ChAT), neurone-specific enolase (NSE), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), substance P (SP) were detected by immunohistochemical methods in whole mounts of gastric fundus myenteric plexus (seven patients). Antibodies against ChAT and NOS labelled the majority of myenteric neurones identified by NSE (57.2 +/- 5.6% and 40.8 +/- 4.5%, respectively; mean +/- SD). The proportions of VIP- and SP-immunoreactive neurones were significantly smaller, constituting 19.6 +/- 6.9% and 16.0 +/- 3.7%, respectively. Co-localization studies revealed five major populations representing over 75% of the myenteric neurones: ChAT/-, 30.1 +/- 6.1%; NOS/-, 24.2 +/- 4.4%; ChAT/SP/-, 8.3 +/- 3.1%; NOS/VIP/-, 7.2 +/- 6.0%; ChAT/VIP/-, 4.9 +/- 2.6. Some similarities are apparent in the neurochemical coding of myenteric neurones in the stomach and intestine of humans, and between the stomach of humans and animals, but striking differences exist. The precise functional role of the neurochemically identified classes of neurones remains to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1350-1925.2003.00442.xDOI Listing

Publication Analysis

Top Keywords

myenteric neurones
20
neurochemical coding
12
gastric fundus
12
+/-
10
coding myenteric
8
neurones
8
neurones human
8
human gastric
8
myenteric
6
fundus major
4

Similar Publications

Background And Aims: Gastrointestinal motility persists when peripheral cholinergic signaling is blocked genetically or pharmacologically, and a recent study suggests nitric oxide drives propagating neurogenic contractions.

Methods: To determine the neuronal substrates that underlie these contractions, we measured contractile-associated movements together with calcium responses of cholinergic or nitrergic myenteric neurons in un-paralyzed ex vivo preparations of whole mouse colon. We chose to look at these two subpopulations because they encompass nearly all myenteric neurons.

View Article and Find Full Text PDF

Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.

View Article and Find Full Text PDF

Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.

View Article and Find Full Text PDF

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!