Dihydroxyacetone synthase (DAS) and methanol oxidase (MOX) are the major enzyme constituents of the peroxisomal matrix in the methylotrophic yeast Hansenula polymorpha when grown on methanol as a sole carbon source. In order to characterize their topogenic signals the localization of truncated polypeptides and hybrid proteins was analysed in transformed yeast cells by subcellular fractionation and electron microscopy. The C-terminal part of DAS, when fused to the bacterial beta-lactamase or mouse dihydrofolate reductase, directed these hybrid polypeptides to the peroxisome compartment. The targeting signal was further delimited to the extreme C-terminus, comprising the sequence N-K-L-COOH, similar to the recently identified and widely distributed peroxisomal targeting signal (PTS) S-K-L-COOH in firefly luciferase. By an identical approach, the extreme C-terminus of MOX, comprising the tripeptide A-R-F-COOH, was shown to be the PTS of this protein. Furthermore, on fusion of a C-terminal sequence from firefly luciferase including the PTS, beta-lactamase was also imported into the peroxisomes of H. polymorpha. We conclude that, besides the conserved PTS (or described variants), other amino acid sequences with this function have evolved in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00279370DOI Listing

Publication Analysis

Top Keywords

methylotrophic yeast
8
yeast hansenula
8
hansenula polymorpha
8
targeting signal
8
extreme c-terminus
8
firefly luciferase
8
targeting sequences
4
sequences major
4
major peroxisomal
4
peroxisomal proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!