Peroxidases have conquered a prominent position in biotechnology and associated research areas (enzymology, biochemistry, medicine, genetics, physiology, histo- and cytochemistry). They are one of the most extensively studied groups of enzymes and the literature is rich in research papers dating back from the 19th century. Nevertheless, peroxidases continue to be widely studied, with more than 2000 articles already published in 2002 (according to the Institute for Scientific Information). The importance of peroxidases is emphasised by their wide distribution among living organisms and by their multiple physiological roles. They have been divided into three superfamilies according to their source and mode of action: plant peroxidases, animal peroxidases and catalases. Among all peroxidases, horseradish peroxidase (HRP) has received a special attention and will be the focus of this review. A brief description of the three super-families is included in the first section of this review. In the second section, a comprehensive description of the present state of knowledge of the structure and catalytic action of HRP is presented. The physiological role of peroxidases in higher plants is described in the third section. And finally, the fourth section addresses the applications of peroxidases, especially HRP, in the environmental and health care sectors, and in the pharmaceutical, chemical and biotechnological industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1387-2656(03)09003-3 | DOI Listing |
Talanta
December 2024
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. Electronic address:
Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA.
View Article and Find Full Text PDFAnal Chem
December 2024
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
The integration of a photosensitive gate into an organic electrochemical transistor has currently emerged as a promising route for biological sensing. However, the modification of the photosensitive gate always involves complex processes, and the degradation of sensitivity of the functional materials under illumination will significantly decrease the stability of the devices. Herein, we designed an organic photoelectrochemical transistor (OPECT) biosensor employing horseradish peroxidase (HRP)@glucose oxidase (GOx)/Pt/n-Si as the photosensitive gate based on the "shadow effect".
View Article and Find Full Text PDFBiomater Adv
December 2024
National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (TiCT) through employing HO/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA.
View Article and Find Full Text PDFChem Asian J
December 2024
Indian Institute of Technology Roorkee, Department of Chemistry, Indian Institute of Technology Roorkee, 247667, Roorkee, INDIA.
Nanozymes, constituting of inorganic nanomaterials, are the sustainable and cost-effective alternatives of the naturally abundant enzymes. For more than a decade, nanozymes have shown astonishingly enhanced enzymatic activity as compared to its naturally occurring counterpart and emerged as a potential platform in biomedical science. The current study reports a novel flower shaped gold-iron oxide nanocomposite prepared via a facile and green solution phase redox mediated synthesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Ruhr University Bochum, Analytische Chemie, Universitätsstr 150, 44780, Bochum, GERMANY.
We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO2 reduction under selective formation of methanol. Ag-Bi2O3 selectively reduces gaseous CO2 to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydro-genase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!