Standard solutions containing a mixture of seven sterols and 5alpha-cholestane as internal standard, and sample mixtures that comprised varying ratios of sterol and stanols from green lip mussel tissue and dried cow faeces were analysed by using comprehensive two-dimensional gas chromatography (GC x GC). Quantitative results were compared with single-column GC analysis. The latter samples included sterols of interest, but which cannot be readily obtained elsewhere. It may also mimic potential environmental samples where dairy production and aquaculture (oyster, mussel cultivation) share the same catchment; environmental sterol signatures may exhibit characteristics of both sample types comprising this mixture. Whereas single-column GC-flame ionisation detection was unable to reliably quantitate target sterols, the GC x GC experiment permitted small amounts of sterols and stanols to be detected and separated. Likewise GC-MS analysis was unable to detect some of the minor sterols which coeluted on a single column. The GC x GC mode allows complete separation of several important sterols and stanols, such as 24-ethylcoprostanol, campesterol and 24-methylenecholesterol, demonstrating the enhanced resolving power of the GC x GC system. Separation of 24-ethyl-epi-coprostanol from several algal-derived interfering components was achieved, leading to higher degree of confidence in the quantitative analysis of faecal sterols. The effects of a number of operating variables--column length, carrier flow-rate and elution temperature--on component resolution and presentation of data in the two-column analysis are described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9673(03)00766-0 | DOI Listing |
ACS Sens
January 2025
Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju 52851, Republic of Korea.
Two-dimensional SnSe (X = 1, 2) has emerged as a promising candidate for a NO chemiresistive sensor due to a remarkable affinity to NO gas adsorption. Although their gas sensing mechanism primarily relies on direct charge transfer, the underlying mechanisms of SnSe and SnSe remain unclear, despite various reported successes in phase engineering of SnSe. Here, we investigate phase engineering of SnSe in a hydrothermal route via 1-dodecanethiol (1-DDT), which served as a phase stabilizer, and comprehensively demonstrate phase-dependent NO detection properties.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Some one-dimensional (1D) crystals containing a screw dislocation along their longer axis exhibit a helical twist due to lattice strain. These chiral structures have been thoroughly investigated by using transmission electron microscopy. However, whether two-dimensional (2D) crystals with a spiral surface pattern, presumably containing a screw dislocation, are structurally chiral remains unclear because their internal structures are not visible.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!