Behavior of gasoline pools following a denatured ethanol spill.

Ground Water

Clarkson University, Department of Civil and Environmental Engineering, Potsdam, NY 13699-5710, USA.

Published: March 2004

In 1999, approximately 72 m3 of denatured fuel-grade ethanol spilled at a bulk fuel terminal that had existing contamination within the subsurface. An unanticipated increase in the measured depth of the light nonaqueous phase liquid (LNAPL) was observed in nearby monitoring wells following the spill. This paper presents results of a laboratory analysis designed to understand the apparent increase in LNAPL mobility at this site. The two-dimensional stainless steel and glass tank allowed visual assessment of the potential effects that the addition of denatured ethanol may have on a site with pre-existing gasoline contamination. Digital images of gasoline and ethanol spill experiments were analyzed for changes in the characteristics of the existing gasoline pool and residual gasoline saturation in the unsaturated zone. Reductions in the surface and interfacial tensions resulted in significant changes in the size, shape, and saturation of the gasoline pool after the addition of ethanol to the system. The final gasoline pool occupied a smaller area and had a higher saturation. In addition, some smearing of the gasoline into the saturated zone occurred as the capillary fringe was depressed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2003.tb02416.xDOI Listing

Publication Analysis

Top Keywords

gasoline pool
12
denatured ethanol
8
ethanol spill
8
gasoline
7
ethanol
5
behavior gasoline
4
gasoline pools
4
pools denatured
4
spill 1999
4
1999 denatured
4

Similar Publications

(1) Background: Ex Vivo Lung Perfusion (EVLP) is a technique designed to assess and recondition marginal lungs, potentially expanding the donor pool and improving transplant outcomes (2) Methods: This retrospective study evaluated lung transplantation outcomes after EVLP. Donor lungs were assessed using the Toronto protocol, with data on hemodynamics, gas exchange, and perfusion parameters collected and analyzed. Post-transplant complications and survival rates were also examined.

View Article and Find Full Text PDF

The deep oceans are environments of complex carbon dynamics that have the potential to significantly impact the global carbon cycle. However, the role of hadal zones, particularly hadal trenches (water depth > 6 km), in the oceanic dissolved organic carbon (DOC) cycle is not thoroughly investigated. Here we report distinct DOC signatures in the Japan Trench bottom water.

View Article and Find Full Text PDF

Dynamic regulation and enhancement of synthetic network for efficient biosynthesis of monoterpenoid α-pinene in yeast cell factory.

Bioresour Technol

January 2025

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China. Electronic address:

Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.

View Article and Find Full Text PDF

Wire-arc additive manufacturing (WAAM) has fully empowered the design and manufacturing of metals with its unparalleled efficiency and flexibility. However, the process has relatively poor shape control capabilities, often requiring machining post-processing. This study explores a tungsten inert gas arc remelting (TIGAR) process to improve the surface flatness of WAAM components at a low cost and significantly reduce machining waste (up to 76%), which is crucial for the sustainable development of the process.

View Article and Find Full Text PDF

A Zinc Polyphenolic Compound Increases Maize Resistance Against Infection by .

Plants (Basel)

December 2024

Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.

Maize leaf blight (MLB), caused by the fungus , is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!