In a recent paper, we described the behavior of the cardiac electric near-field, E, parallel to the tissue surface during continuous conduction. We found that the tip of E describes a vector-loop during depolarization with the peak field, E, pointing opposite to the direction of propagation, phiI(m). Experimentally recorded loop morphologies of E, however, frequently showed significant deviations from the theoretically predicted behavior. We hypothesized that this variety of morphologies might be caused by conduction obstacles at a microscopic size scale. This study examines the influence of obstacles on the morphology of vector loops of E and whether the peak of distorted loops remains a reliable indicator for the direction of propagation. We used a computer model of a sheet of cardiac tissue with a central conduction obstacle immersed in an unbounded volume conductor. We studied the loop morphologies of E and the differences between the intracellularly determined direction of propagation, phiI(m), and the direction of E, phiE. Distortions of the vector loop were morphologically similar to those observed experimentally. Differences between phiI(m) and phiE were less than 18 degrees at all observation sites. The obstacle led to deformations of the loop morphology, particularly during the initial and terminal phases, and to a lesser degree near the instant of E. We concluded that E is a reliable indicator of phiI(m).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1114/1.1615573 | DOI Listing |
Sci Rep
January 2025
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.
Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
Nano Lett
January 2025
Department of Physics, University of Oviedo, Oviedo 33006, Spain.
Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
While the number of studies investigating Achilles tendon pathologies has grown exponentially, more research is needed to gain a better understanding of the complex relation between its hierarchical structure, mechanical response, and failure. At the microscale, collagen fibers are, with some degree of dispersion, primarily aligned along the principal loading direction. However, during tension, rearrangements and reorientations of these fibers are believed to occur.
View Article and Find Full Text PDFMed Image Anal
January 2025
Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK. Electronic address:
Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!