The main objective of this research was to investigate to what extent the potential C dynamics of soil organic matter (SOM) are related to the degree of 13C enrichment with increasing depth in soil profiles under permanent grassland. The evolution of the C content and the 13C natural abundance (delta13C value) of SOM were investigated in three soil profiles (0-40 cm depth) under permanent grassland of varying texture (a loamy sand, a loam and a clay loam soil). The delta13C value of the SOM showed a gradual increase with increasing depth and decreasing C content in the profiles, ranging from 1.9 per thousand (loamy sand soil), 2.9 per thousand (clay loam soil) and 4 per thousand (loam soil) in relation to the delta13C value of SOM at the surface. The relationship between the 13C enrichment and total organic C content at different depths in the profiles (down to 40 cm depth in the loam and clay loam soil, down to 25 cm depth in the loamy sand soil) could be well described by the Rayleigh equation. The enrichment factors epsilon, associated with the Rayleigh approximation of the data, ranged from -1.57 per thousand (clay loam soil) to -1.64 per thousand (loamy sand soil) and -1.91 per thousand (loam soil). The potential C dynamics in four depth intervals from the profiles (0-10, 10-20, 20-30 and 30-40 cm depth) were determined by means of an incubation experiment. The C decomposition rate constants from the four sampling depths in the profiles showed a significant, positive correlation (y = 0.21x + 0.018, R(2) = 0.66, p < 0.005) with the corresponding Deltadelta13C values (change of the delta13C value per depth increment). A better correlation was obtained when only the data from the upper 20 cm in the profiles (y = 0.21x + 0.019, R(2) = 0.78, p < 0.05) were considered. These results suggest that the Deltadelta13C values in the surface layers of profiles under permanent grassland may serve as an indicator of the potential degradability or the stability of the SOM (in terms of C decomposition rate constants).

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.1202DOI Listing

Publication Analysis

Top Keywords

loam soil
24
permanent grassland
16
loamy sand
16
clay loam
16
profiles permanent
12
soil
12
delta13c som
12
sand soil
12
profiles
9
soil organic
8

Similar Publications

Exploration of the bio-availability and the risk thresholds of cadmium and arsenic in contaminated paddy soils.

Heliyon

December 2024

The Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, The Key Laboratory of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China.

Cadmium (Cd) and arsenic (As) contamination risk in paddy soils has raised global concern. In order to scientifically and objectively evaluate the bioavailability of soil Cd, As and the risk of Cd or As threshold in contaminated farmland, this study was conducted to investigate different types of extractants for their potential extraction efficiency of Cd and As. Soils from two different parent materials in Hunan, Yueyang and Yiyang, typical double-cropping rice production areas in the south of China, were used as test soils.

View Article and Find Full Text PDF

Effect of Meloidogyne incognita and Pseudomonas syringae pv. aptata (Psa) was observed singly, together and pre and post inoculations in 4 soil types on plant growth, parameters, chlorophyll, carotenoid and proline contents of beetroot (Beta vulgaris L). Plant growth, chlorophyll and carotenoid contents were greater in loam soil followed by 20% fly ash soil, 10% fly ash plus 10% sand amended soil and least in 20 % sand mix soil.

View Article and Find Full Text PDF

Arsenic(V) and vanadium(V) fractionation after its incorporation into a sandy loam soil from Pampas region, Argentina.

Environ Monit Assess

December 2024

Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 1, C1428EHA, Buenos Aires, Argentina.

Arsenic is a well-known toxic substance, widely distributed, whereas vanadium is a pollutant of emerging interest. Both have been found to correlate positively in groundwaters, thus concern arises on the effect of these pollutants on crops, if such waters are used for irrigation. We conducted a study on the effect of aging with a typical crop soil mimicking soils initially irrigated with water containing As and V.

View Article and Find Full Text PDF

The retention and mobility of arsenic (As) in soil depend on various physical and chemical factors. The knowledge of the sorption-desorption chemistry of As in soil is necessary for predicting the fate and behavior of As in soil environments. Therefore, this study assessed different organic (sugarcane bagasse and vermicompost) and inorganic amendments (steel slag and fly ash) for their impact on sorption-desorption of As in texturally different contaminated soils (of sandy clay (SC) and sandy clay loam (SCL) texture) to understand the effect of amendments on As retention and mobility.

View Article and Find Full Text PDF

Effect of fumigation, cover crops, and potato growth on shifts in soil microbial communities.

Sci Total Environ

December 2024

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA. Electronic address:

Fumigation as a broad-spectrum pesticide can affect both pathogenic and non-target microorganisms in the soil. As microbial communities are critical within the soil ecosystem, depletion of or changes in these communities can result in negative implications for soil health. Because cover crops are used to enhance soil health physically, chemically, and biologically, they might recover the soil health of the fumigated soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!