The proteome of RCC was analyzed by 2D PAGE to search for tumor-associated proteins. Agmatinase, which hydrolyzes agmatine to putrescine and urea, was identified by mass spectrometry and database searches and shown to be downregulated in tumor cells. Additionally, RT-PCR and Northern blot analyses demonstrated a clearly decreased amount of agmatinase mRNA in tumor cells. The differential expression of agmatinase mRNA was confirmed at the protein level. Western blot analysis showed almost no detectable agmatinase protein in tumor cells compared to corresponding normal renal tissue. Agmatinase mRNA is most abundant in human liver and kidney but expressed to a lesser extent in several other tissues, including skeletal muscle and small intestine. The human agmatinase gene encodes a 352-residue protein with a putative mitochondrial targeting sequence at the N-terminus. Using transfection and immunohistochemical studies, we show that agmatinase is localized in the mitochondria. Immunohistochemical studies revealed that agmatinase in the normal kidney is restricted to tubulus epithelial cells, while in tumors staining was low and heterogeneous. Thus, expression of human agmatinase is altered in RCC. We discuss the consequences of these findings in terms of polyamine, NO metabolism and macrophage function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.11459 | DOI Listing |
FEMS Yeast Res
January 2024
Department of Microbiology, University of Stellenbosch, Stellenbosch, 7600, South Africa.
Emergomyces africanus is a thermally dimorphic pathogen causing severe morbidity and mortality in immunocompromized patients. Its transition to a pathogenic yeast-like phase in the human host is a notable virulence mechanism. Recent studies suggest polyamines as key players in dimorphic switching, yet their precise functions remain enigmatic.
View Article and Find Full Text PDFiScience
February 2024
Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA.
Metformin is the first-line treatment for type 2 diabetes, yet its mechanism of action is not fully understood. Recent studies suggest metformin's interactions with gut microbiota are responsible for exerting therapeutic effects. In this study, we report that metformin targets the gut microbial enzyme agmatinase, as a competitive inhibitor, which may impair gut agmatine catabolism.
View Article and Find Full Text PDFNeuropharmacology
May 2023
Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Beijing Institute of Brain Disorders, Advanced Innovation Center for Human Brain Protection, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China. Electronic address:
Agmatine is an endogenous polyamine produced from l-arginine and degraded by agmatinase (AGMAT). Studies in humans and animals have shown that agmatine has neuroprotective, anxiolytic, and antidepressant-like actions. However, little is known about the role of AGMAT in the action of agmatine or in the pathophysiology of psychiatric disorders.
View Article and Find Full Text PDFOncol Rep
March 2023
Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Fengxian, Shanghai 201499, P.R. China.
Colorectal carcinoma (CRC) is one of the most common types of digestive cancer. It has been reported that the ectopic expression of microRNAs (miRs) plays a critical role in the occurrence and progression of CRC. In addition, it has also been suggested that miR‑151a‑5p may serve as a useful biomarker for the early detection and treatment of different types of cancer and particularly CRC.
View Article and Find Full Text PDFSci Rep
December 2022
Department of Chemistry, University of Konstanz, Konstanz, Germany.
Guanidino acids such as taurocyamine, guanidinobutyrate, guanidinopropionate, and guanidinoacetate have been detected in humans. However, except for guanidionacetate, which is a precursor of creatine, their metabolism and potential functions remain poorly understood. Agmatine has received considerable attention as a potential neurotransmitter and the human enzyme so far annotated as agmatinase (AGMAT) has been proposed as an important modulator of agmatine levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!