The aim of this study was to show that atomic force microscopy (AFM) can be used to obtain mechanistic and kinetic information about the process of moisture-induced surface crystallization of single particles of amorphous lactose. Completely amorphous lactose particles were prepared by spray-drying a solution of alpha-lactose monohydrate, and moisture-induced crystallization was monitored for a bed of particles by microcalorimetry and for single particles by AFM. From the AFM images it was found that crystallization of the surface of single particles can be described in terms of a sequence of three events: an initial smoothening of the surface, formation of crystalline nanostructures dispersed in amorphous material, and growth of these structures to a complete crystalline surface. The surface roughness parameter rugosity was used to estimate the fraction crystalline surface, and the growth kinetics were found to obey the JMAK equation. The fraction crystalline surface at different times could also be estimated by determining the growth rate of individual crystals. It was concluded that AFM offers a unique means of visualizing the process of moisture-induced surface crystallization of amorphous particles and enables mechanistic and kinetic information about the process to be extracted.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.10503DOI Listing

Publication Analysis

Top Keywords

moisture-induced surface
12
surface crystallization
12
amorphous lactose
12
single particles
12
crystalline surface
12
lactose particles
8
atomic force
8
force microscopy
8
mechanistic kinetic
8
kinetic process
8

Similar Publications

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

Hydrogel-based nonwoven with persistent porosity for whole-stage hypertonic wound healing by regulating of water vaporization enthalpy.

Biomaterials

May 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.

Moisture induced by wound exudate is crucial throughout the wound repair process. The dressing directly affects the absorption, permeation, and evaporation of the wound exudate. However, most dressings in clinical often result in excessive dryness or moisture of wound due to their monotonous structure and function, leading to ineffective thermodynamic control of evaporation enthalpy.

View Article and Find Full Text PDF

Superinsulating nanofibrillar cellulose foams have the potential to replace fossil-based insulating materials, but the development is hampered by the moisture-dependent heat transport and the lack of direct measurements of phonon transport. Here, inelastic neutron scattering is used together with wide angle X-ray scattering (WAXS) and small angle neutron scattering to relate the moisture-dependent structural modifications to the vibrational dynamics and phonon transport and scattering of cellulose nanofibrils from wood and tunicate, and wood cellulose nanocrystals (W-CNC). The moisture interacted primarily with the disordered regions in nanocellulose, and WAXS showed that the crystallinity and coherence length increased as the moisture content increased.

View Article and Find Full Text PDF
Article Synopsis
  • - Metal halide perovskites are promising for optoelectronic applications but struggle with moisture sensitivity, which affects their performance and commercialization.
  • - Moisture causes degradation in these materials due to their ionic nature, making it challenging to fully understand how this impacts their luminescent properties.
  • - This study investigates the degradation of perovskite nanocrystals, finding that larger crystal sizes lead to improved stability in moist conditions, enhancing their optical performance and potential for light-emitting technologies.
View Article and Find Full Text PDF

Ambient Moisture-Induced Self Alignment of Polarization in Ferroelectric Hafnia.

Adv Sci (Weinh)

December 2024

Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China.

The discovery of nanoscale ferroelectricity in hafnia (HfO) has paved the way for next generation high-density, non-volatile devices. Although the surface conditions of nanoscale HfO present one of the fundamental mechanism origins, the impact of external environment on HfO ferroelectricity remains unknown. In this study, the deleterious effect of ambient moisture is examined on the stability of ferroelectricity using HfZrO (HZO) films as a model system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!