Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The neuronal growth cone provides the sensory and motor structure that guides neuronal processes to their target. The ability of a growth cone to navigate correctly depends on its filopodia, which sample the environment by continually extending and retracting as the growth cone advances. Several second messengers systems that are activated upon contact with extracellular cues have been reported to affect growth cone morphology by changing the length and number of filopodia. Because recent studies have suggested that guidance cues can signal via G-protein coupled receptors to regulate phospholipases, we here investigated whether phospholipase A2 (PLA2) may control filopodial dynamics and could thereby affect neuronal pathfinding. Employing identified Helisoma neurons in vitro, we demonstrate that inhibition of PLA2 with 2 microM BPB caused a 40.3% increase in average filopodial length, as well as a 37.3% reduction in the number of filopodia on a growth cone. The effect of PLA2 inhibition on filopodial length was mimicked by the inhibition of G-proteins with 500 ng/ml pertussis toxin and was partially blocked by the simultaneous activation of PLA2 with 50 nM melittin. We provide evidence that PLA2 acts via production of arachidonic acid (AA), because (1) the effect of inhibition of PLA2 could be counteracted by supplying AA exogenously, and (2) the inhibition of cyclooxygenase, which metabolizes AA into prostaglandins, also increased filopodial length. We conclude that filopodial contact with extracellular signals that alter the activity of PLA2 can control growth cone morphology and may affect neuronal pathfinding by regulating the sensory radius of navigating growth cones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.10156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!