Plant morphogenesis depends on an array of microtubules in the cell cortex, the cortical array. Although the cortical array is known to be essential for morphogenesis, it is not known how the array becomes organized or how it functions mechanistically. Here, we report the development of an in vitro model that provides good access to the cortical array while preserving the array's organization and, importantly, its association with the cell wall. Primary roots of maize (Zea mays) are sectioned, without fixation, in a drop of buffer and then incubated as desired before eventual fixation. Sectioning removes cytoplasm except for a residuum comprising cortical microtubules, vesicles, and fragments of plasma membrane underlying the microtubules. The majority of the cortical microtubules remain in the cut-open cells for more than 1 h, fully accessible to the incubation solution. The growth zone or more mature tissue can be sectioned, providing access to cortical arrays that are oriented either transversely or obliquely to the long axis of the root. Using this assay, we report, first, that cortical microtubule stability is regulated by protein phosphorylation; second, that cortical microtubule stability is a function of orientation, with divergent microtubules within the array depolymerizing within minutes of sectioning; and third, that the polarity of microtubules in the cortical array is not uniform. These results suggest that the organization of the cortical array involves random nucleation followed by selective stabilization of microtubules formed at the appropriate orientation, and that the signal specifying alignment must treat orientations of +/- 180 degrees as equivalent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.10153 | DOI Listing |
Sci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany. Electronic address:
Background: Deep brain stimulation (DBS) targeting globus pallidus internus (GPi) is a recognised therapy for drug-refractory dystonia. However, the mechanisms underlying this effect are not fully understood. This study explores how pallidal DBS alters spatiotemporal pattern formation of neuronal dynamics within the cerebellar cortex in a dystonic animal model, the dt hamster.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.
For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.
View Article and Find Full Text PDFJ Neural Eng
December 2024
University of California San Francisco, 513 Parnassus Avenue, S362, SAN FRANCISCO, San Francisco, 94143, CHINA.
Objective: Electroencephalography (EEG) and Magnetoencephalography (MEG) are widely used non-invasive techniques in clinical and cognitive neuroscience. However, low spatial resolution measurements, partial brain coverage by some sensor arrays, as well as noisy sensors could result in distorted sensor topographies resulting in inaccurate reconstructions of underlying brain dynamics. Solving these problems has been a challenging task, This paper proposes a robust framework based on electromagnetic source imaging for interpolation of unknown or poor quality EEG/MEG measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!