The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach.

Funct Integr Genomics

Paradigm Genetics, 108 Alexander Drive, Research Triangle Park, NC 27709-4528, USA.

Published: December 2003

To increase our understanding of the mode of action of auxin, we analyzed auxin-induced changes in the Arabidopsis transcriptome with microarrays representing 20426 Arabidopsis genes. Treatment of etiolated seedlings with low concentrations of the auxin, indole-3-acetic acid (IAA), decreased the expression levels of 23 genes, whereas it increased the expression levels of 47 genes within 20 min. After 40 min, the directional trend in genomic change was predominantly an increase in gene expression. Among the most rapidly induced changes are those in genes encoding transcription factors. Promoter regions of transiently induced genes contained DNA motifs that bind auxin response (ARFAT) and silence element binding factors whereas genes induced by IAA during the entire experimental period contained MYC and ARFAT DNA motifs at higher frequencies. Six structurally diverse auxins were analyzed to determine genes that are unique to a specific auxin, as well as a common set of genes that are rapidly regulated by all tested auxins, thus enabling the identification of shared DNA motifs. In addition to ARFAT, analysis of promoter regions of genes induced by all six auxins revealed the presence of an abscisic-acid-responsive DC3 promoter-binding factor and low temperature responsive elements suggesting a possible role for abscisic acid in modulating auxin-induced responses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-003-0093-7DOI Listing

Publication Analysis

Top Keywords

dna motifs
12
genes
9
expression levels
8
levels genes
8
promoter regions
8
genes induced
8
auxin-induced transcriptome
4
transcriptome etiolated
4
etiolated arabidopsis
4
arabidopsis seedlings
4

Similar Publications

Massively parallel characterization of transcriptional regulatory elements.

Nature

January 2025

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.

The human genome contains millions of candidate cis-regulatory elements (cCREs) with cell-type-specific activities that shape both health and many disease states. However, we lack a functional understanding of the sequence features that control the activity and cell-type-specific features of these cCREs. Here we used lentivirus-based massively parallel reporter assays (lentiMPRAs) to test the regulatory activity of more than 680,000 sequences, representing an extensive set of annotated cCREs among three cell types (HepG2, K562 and WTC11), and found that 41.

View Article and Find Full Text PDF

Single-molecule imaging for investigating the transcriptional control.

Mol Cells

January 2025

Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Korea. Electronic address:

Transcription is an essential biological process involving numerous factors, including transcription factors (TFs) which play a central role in this process by binding to their cognate DNA motifs. Although cells must tightly regulate the kinetics of factor association and dissociation during transcription, factor dynamics during transcription remain poorly characterized, primarily because of the reliance on ensemble experiments that average out molecular heterogeneity. Recent advances in single-molecule fluorescence imaging techniques have enabled the exploration of TF dynamics at unprecedented resolution.

View Article and Find Full Text PDF

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

RNA can serve as an enzyme, small molecule sensor, and vaccine, and it may have been a conduit for the origin of life. Despite these profound functions, RNA is thought to have quite limited molecular diversity. A pressing question, therefore, is whether RNA can adopt novel molecular states that enhance its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!