Sarcocystis spp. in birds of the order Anseriformes.

Parasitol Res

Laboratory of Parasitology, Institute of Ecology, Vilnius University, Akademijos 2, 2600, Vilnius, Lithuania.

Published: January 2004

Having studied 342 birds of 20 species of the order Anseriformes, we found Sarcocystis cysts in 100 individuals (29.2+/-2.5%) belonging to 15 species. One macrocyst and four microcysts types have been determined. By means of light microscopy, the morphology of cyst walls and merozoites have been examined and morphometric data are presented. According to morphological features, macrocysts correspond to the S. rileyi species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-003-1018-zDOI Listing

Publication Analysis

Top Keywords

order anseriformes
8
sarcocystis spp
4
spp birds
4
birds order
4
anseriformes studied
4
studied 342
4
342 birds
4
birds species
4
species order
4
anseriformes sarcocystis
4

Similar Publications

A high-quality assembly revealing the PMEL gene for the unique plumage phenotype in Liancheng ducks.

Gigascience

January 2025

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Background: Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.

View Article and Find Full Text PDF

Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season.

View Article and Find Full Text PDF

In herpesvirus, the terminase subunit pUL15 is involved in cleavage of the viral genome concatemers in the nucleus. Previous studies have shown that herpes simplex virus 1 (HSV-1) pUL15 can enter the nucleus without other viral proteins and help other terminase subunits enter the nucleus. However, this study revealed that duck plague virus (DPV) pUL15 cannot localize independently to the nucleus and can only be localized in the nucleus in the presence of pUL28 and pUL33.

View Article and Find Full Text PDF

Duck Tembusu virus (DTMUV), a novel positive-sense RNA virus, has caused significant economic losses in the poultry industry of Eastern and Southeast Asia since its outbreak in 2010. Furthermore, the rapid transmission and potential zoonotic nature of DTMUV pose a threat to public health safety. In this study, a 4D-DIA quantitative proteomics approach was employed to identify differentially expressed cellular proteins in DTMUV-infected DF-1 cells, which are routinely used for virus isolation and identification for DTMUV, as well as the development of vaccines against other poultry viruses.

View Article and Find Full Text PDF

Identification of Candidate Genes for Sebum Deposition in Pekin Ducks Using Genome-Wide Association Studies.

Genes (Basel)

November 2024

Emergency Department, Shenzhen New Frontier United Family Healthcare, Shenzhen 518038, China.

Background: Sebum deposition is a vital trait influencing meat quality and production efficiency in Pekin ducks. Providing insights into the genetic basis of fat deposition could help improve breeding strategies aimed at producing high-quality meat ducks. This study aimed to identify the genetic mechanisms and lipid metabolism pathways regulating subcutaneous and intramuscular fat deposition in two Pekin duck strains: Nankou No.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!