Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B.

Cancer Immunol Immunother

Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, 120-752 Seoul, Korea.

Published: May 2004

Purpose: Unlike normal hepatocytes, most hepatocellular carcinomas (HCCs) are quite resistant to death receptor-mediated apoptosis when the cell surface death receptor is cross linked with either agonistic antibodies or soluble death ligand proteins in vitro. The resistance might play an essential role in the escape from the host immune surveillance; however, it has not been directly demonstrated that HCCs are actually resistant to natural killer (NK) cell-mediated death. Therefore, this study investigated the molecular mechanism of NK cell-mediated cytotoxicity against the HCCs, HepG2, and Hep3B, using two distinct cytotoxic assays: a 4-h (51)Cr-release assay and a 2-h [(3)H] thymidine release assay which selectively measures the extent of necrotic and apoptotic target cell death, respectively.

Methods: Most of the target cells exhibited marked morphologic changes when they were co-incubated with the NK cells, and the NK cytotoxicity against these HCCs was comparable to that against K562, a NK-sensitive leukemia cell line, when the cytotoxicity was assessed by a 4-h (51)Cr release assay.

Results: The NK cells also induced significant apoptotic cell death in the Hep3B targets, but not in the HepG2 targets, when the cytotoxicity was assessed by a 2-h [(3)H]-thymidine release assay. In agreement with these results, procaspase-3 was activated in the Hep3B targets, but not in the HepG2 targets. Interestingly, mildly fixed NK cells had no detectable activity in the 4-h (51)Cr release assay against both HepG2 and Hep3B targets, while they were similarly effective as the untreated NK cells in the 2-h [(3)H]-thymidine release assay, suggesting that the level of apoptotic cell death of the Hep3B targets is granule independent and might be primarily mediated by the death ligands of the NK cells.

Conclusion: This study found that a tumor necrosis factor (TNF)-related apoptosis-inducing ligand TRAIL)/TRAIL receptor interaction is involved in the NK cell-mediated apoptotic death of the Hep3B targets, but a Fas/Fas ligand (FasL) interaction is not.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034283PMC
http://dx.doi.org/10.1007/s00262-003-0461-0DOI Listing

Publication Analysis

Top Keywords

hep3b targets
20
release assay
16
hepg2 hep3b
12
cell death
12
death hep3b
12
death
9
natural killer
8
hccs resistant
8
cytotoxicity hccs
8
cytotoxicity assessed
8

Similar Publications

Isolation of anti-inflammatory and cytotoxic secondary metabolites from Valeriana phu and evaluation of their mechanisms of action.

Fitoterapia

January 2025

Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, TR-34755, Kayışdağı, İstanbul, Türkiye. Electronic address:

As a result of anti-inflammatory activity-guided fractionation, 16 secondary metabolites from the underground parts of Valeriana phu L. were obtained, including five new ones belonging to iridoid (1, 2, and 5), phenylpropanoid (6) and neolignan (7) chemical classes. Their structures were elucidated by 1D and 2D NMR analyses as well as HRESIMS.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), a leading cause of cancer-related deaths, is often linked to dysregulated cell cycle proteins. This study focuses on the role of WISP1 in modulating Cyclin D1, a key cell cycle regulator, in HCC. The study used HCCLM3 and Hep3B cells to assess the expression of Cyclin D1 and cell proliferation following the treatment of WISP1.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a highly aggressive cancer, and while current immunotherapy options have limitations like side effects and low effectiveness, traditional Chinese medicine offers less toxic alternatives.
  • In a study analyzing 1,444 compounds, digoxigenin (DIG) was identified as a potent inhibitor of HCC cell growth, showing promising results through various experimental assays.
  • DIG appears to work by modulating the PI3K/AKT/mTOR signaling pathway to induce autophagy in HCC cells, with further validation in both lab and animal models supporting its potential as a novel treatment for liver cancer.
View Article and Find Full Text PDF

Background & Aims: Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy.

Methods: HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!