Cyclin D-dependent kinases phosphorylate the retinoblastoma (Rb) protein and play a critical role in neuronal cell cycle control and apoptosis. Here we show that cyclin D1 became predominantly cytoplasmic as primary cortical progenitor cells underwent cell cycle withdrawal and terminal differentiation. Furthermore, ectopically expressed cyclin D1 sequestered in the cytoplasm of postmitotic neurons, whereas it efficiently entered the nucleus of proliferating progenitor cells. Cytoplasmic cyclin D1 were complexed with cyclin-dependent kinase 4 (CDK4), and also with CDK inhibitors, p27(Kip)(I) or p21(Cip)(I), which positively regulate assembly and nuclear accumulation of the cyclin D1-CDK4 complex. Although overexpression of p21(Cip)(I) promoted cyclin D1 nuclear localization, inhibition of either glycogen synthase kinase 3beta- or CRM1-mediated cyclin D1 nuclear export did not, suggesting that the inhibition of its nuclear import, rather than the acceleration of nuclear export, contributes to cytoplasmic sequestration of cyclin D1 in postmitotic neurons. In differentiated progenitor cells, nuclear localization of ectopic cyclin D1 induced apoptosis, and the DNA-damaging compound camptothecin caused nuclear accumulation of endogenous cyclin D1, accompanied by Rb phosphorylation. These results indicate that nuclear accumulation of cyclin D1 is inhibited in postmitotic neurons and suggest a role of its subcellular localization in neuronal death and survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1206870 | DOI Listing |
Genes Dev
December 2024
Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, New York 10025, USA.
The pan-neuronally expressed and phylogenetically conserved CUT homeobox gene orchestrates pan-neuronal gene expression throughout the nervous system of As in many other species, including humans, is encoded by a complex locus that also codes for a Golgi-localized protein, called CASP (Cux1 alternatively spliced product) in humans and CONE-1 ("CASP of nematodes") in How gene expression from this complex locus is controlled-and, in , directed to all cells of the nervous system-has not been investigated. We show here that pan-neuronal expression of CEH-44/CUX is controlled by a pan-neuronal RNA splicing factor, UNC-75, the homolog of vertebrate CELF proteins. During embryogenesis, the locus exclusively produces the Golgi-localized CONE-1/CASP protein in all tissues, but upon the onset of postmitotic terminal differentiation of neurons, UNC-75/CELF induces the production of the alternative CEH-44/CUX CUT homeobox gene-encoding transcript exclusively in the nervous system.
View Article and Find Full Text PDFNeural Regen Res
November 2025
Department of Neuroscience, Ohio State University, Columbus, OH, USA.
In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons.
View Article and Find Full Text PDFUnlabelled: Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human yet their impact on brain development has not been investigated. Here, we developed mouse models with different DNA-binding missense mutations.
View Article and Find Full Text PDFBiomol Ther (Seoul)
January 2025
Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478.
Genes involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis, including the glucocorticoid receptor (GR), are linked to various stress-related psychopathologies including bipolar disorder as well as other mood and trauma-related disorders. The protein product of the cell cycle gene, is a GR interaction partner in peripheral cells. However, the precise roles of SKA2 in stress and GR signaling in the brain, specifically in nonreplicating postmitotic neurons, and its involvement in HPA axis regulation remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!