UV-B irradiated cell lines execute programmed cell death in various forms.

Apoptosis

Institute of Clinical Immunology and Rheumatology, Department of Medicine III, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany.

Published: March 1998

We investigated changes typical for apoptosis in various cell lines after UV-B irradiation. Using established methods for detection of apoptosis we demonstrate changes of cellular morphology, phosphatidylserine (PS) exposure, ollgonucleosomal DNA fragmentation and generation of hypochrome nuclei. To isolated high-molecular-weight (hmwt) DNA fragments we engaged a new method avoiding pulse field gel electrophoresis. Most UV-B irradiated cell lines showed oligonucleosomal DNA fragmentation, hypochrome nuclei, morphological changes, annexin-V binding and positive TUNEL reaction. However, no oligonucleosomal DNA fragmentation could be detected in Raji and HaCaT cells. Whereas HaCaT cells displayed all other changes typical for apoptosis, Raji cells were TUNEL negative, formed low amounts of hmwt DNA and showed an 'atypically' low hypochrome shift. Nevertheless, UV-B irradiated Raji cells excluded propidium iodide (PI), bound annexin-V and stopped proliferation. This suggests that Raji cells underwent growth arrest with exposure of PS being the only feature of apoptosis. However, in the presence of phagocytes expressing the phosphatidylserine receptor these cells would share the removal pathway with apoptotic cells. Since UV-B induced programmed cell death differs in dependence of cells under investigation, the failure to detect oligonucleosomal DNA fragmentation or chromatin condensation is not suitable to exclude programmed (apoptotic?) cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1009601109509DOI Listing

Publication Analysis

Top Keywords

dna fragmentation
16
uv-b irradiated
12
cell lines
12
cell death
12
oligonucleosomal dna
12
raji cells
12
irradiated cell
8
programmed cell
8
changes typical
8
typical apoptosis
8

Similar Publications

Background: Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics.

View Article and Find Full Text PDF

Peptide mapping analysis of synthetic semaglutide and liraglutide for generic development of drugs originating from recombinant DNA technology.

J Pharm Biomed Anal

January 2025

College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea. Electronic address:

Semaglutide and liraglutide are long-acting glucagon-like peptide-1 receptor agonists used to treat type-2 diabetes and obesity. Recent advances in peptide synthesis and analytical technologies have enabled the development of synthetic generic peptide for reference listed drugs (RLD) originating from recombinant DNA (rDNA) technology. Since the original semaglutide and liraglutide were produced through rDNA technology, there has been great interest in developing their synthetic peptides as generic versions of the original drugs.

View Article and Find Full Text PDF

Microfluidic purification of genomic DNA.

Proc Natl Acad Sci U S A

January 2025

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.

View Article and Find Full Text PDF

Background: Hemodynamic alterations in the spermatic vein are implicated in infertility among patients with varicocele (VC). Contrast-enhanced ultrasound (CEUS), a powerful tool for hemodynamic analysis, remains unexplored for VC. This study aimed to demonstrate the feasibility of using CEUS to evaluate spermatic vein hemodynamics in patients with VC and establish a clear correlation between specific hemodynamic patterns and impaired semen parameters.

View Article and Find Full Text PDF

The current study aimed to assess the preventive effects of aqueous leaf extract of Pistacia lentiscus (ALEPL) against Oxaliplatin (OXA)-induced DNA damage, hepatic injury, and oxidative stress. The in vitro cytotoxic and genotoxic effects of OXA and ALEPL on HCT116 colon cancer cells were evaluated using the MTT (Tetrazolium salt reduction) assay and comet assay. The in vivo study involved 24 female NMRI (Naval Medical Research Institute) mice that were equally divided into four groups as follows: Control group, ALEPL-treated group (100 mg/kg), OXA-treated group (7 mg/kg), and ALEPL-treated group (100mg/kg) + OXA (7mg/kg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!