The myelodysplastic syndromes: a matter of life or death.

Acta Haematol

Department of Haematological Medicine, Norfolk & Norwich University Hospital, Norwich, UK.

Published: January 2004

Apoptosis is upregulated in early myelodysplastic syndromes (MDS) and may contribute to the peripheral cytopenias commonly observed. Conversely, leukemic progression is associated with abrogation of programmed cell death (PCD). The stage of hematopoietic cell maturation at which defects in PCD arise and the underlying causes of apoptosis dysregulation remain unknown. This paper outlines the apoptotic process in normal hematopoietic cells and summarizes current data regarding the role, potential causes and clinical implications of altered apoptosis in MDS.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000074488DOI Listing

Publication Analysis

Top Keywords

myelodysplastic syndromes
8
syndromes matter
4
matter life
4
life death
4
death apoptosis
4
apoptosis upregulated
4
upregulated early
4
early myelodysplastic
4
syndromes mds
4
mds contribute
4

Similar Publications

Background: Myelodysplastic syndromes/neoplasms (MDS) are a diverse group of clonal myeloid disorders. Advances in molecular technology lead to the development of new classification systems. However, large-scale epidemiological studies on MDS in Asian countries are currently scarce.

View Article and Find Full Text PDF

Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.

View Article and Find Full Text PDF

T cells, as integral components of the adaptive immune system, recognize diverse antigens through unique T cell receptors (TCRs). To achieve this, during T cell maturation, the thymus generates a wide repertoire of TCRs. This is essential for understanding cancer evolution, progression, and the efficacy of immunotherapies.

View Article and Find Full Text PDF

Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.

View Article and Find Full Text PDF

O-GlcNAcylated FTO promotes m6A modification of SOX4 to enhance MDS/AML cell proliferation.

Cell Commun Signal

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China.

Fat mass and obesity-associated protein (FTO) was the first m6A demethylase identified, which is responsible for eliminating m6A modifications in target RNAs. While it is well-established that numerous cytosolic and nuclear proteins undergo O-GlcNAcylation, the possibility of FTO being O-GlcNAcylated and its functional implications remain unclear. This study found that a negative correlation between FTO expression and O-GlcNAcylation in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!