The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence interval: 0.0 to 2.0) megagrams of carbon per hectare per year. Biometric observations confirmed the net loss but imply that it is a transient effect of recent disturbance superimposed on long-term balance. Given that episodic disturbances are characteristic of old-growth forests, it is likely that carbon sequestration is lower than has been inferred from recent eddy covariance studies at undisturbed sites.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1091165DOI Listing

Publication Analysis

Top Keywords

eddy covariance
8
carbon
6
carbon amazon
4
amazon forests
4
forests unexpected
4
unexpected seasonal
4
seasonal fluxes
4
fluxes disturbance-induced
4
disturbance-induced losses
4
losses net
4

Similar Publications

Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone.

Glob Chang Biol

January 2025

Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.

The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.

View Article and Find Full Text PDF

The partitioning of photosynthate among various forest carbon pools is a key process regulating long-term carbon sequestration, with allocation to aboveground woody biomass carbon (AGBC) in particular playing an outsized role in the global carbon cycle due to its slow residence time. However, directly estimating the fraction of gross primary productivity (GPP) that goes to AGBC has historically been difficult and time-consuming, leaving us with persistent uncertainties. We used an extensive dataset of tree-ring chronologies co-located at flux towers to assess the coupling between AGBC and GPP, calculate the fraction of fixed carbon that is allocated to AGBC, and understand the drivers of variability in this fraction.

View Article and Find Full Text PDF

A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions.

View Article and Find Full Text PDF

Enhancing evapotranspiration estimates in composite terrain through the integration of satellite remote sensing and eddy covariance measurements.

Sci Total Environ

January 2025

Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA; Department of Land, Air, and Water Resources, University of California, Davis, CA, USA. Electronic address:

Accurate evaluation of water resource systems is essential for informed planning and decision-making. Evapotranspiration (ET), a key component of water resource management, is often estimated using remote sensing techniques; however, such estimates can be subject to significant uncertainties under certain conditions. In this study, we present a novel approach to improving the accuracy of ET estimates in composite terrains.

View Article and Find Full Text PDF

Dual controls of vapour pressure deficit and soil moisture on photosynthesis in a restored temperate bog.

Sci Total Environ

January 2025

Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia. Electronic address:

Despite only covering ~3 % of the land mass, peatlands store more carbon (C) per unit area than any other ecosystem. This is due to the discrepancy between C fixed by the plants (Gross primary productivity (GPP)) and decomposition. However, this C is vulnerable to frequent, severe droughts and changes in the peatland microclimate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!