Background/aims: Overexpression of the G1 cyclins, D1 and E, and/or downregulation of p27(Kip1) allow uncontrolled tumour cell proliferation. This study investigated the relation between these three cell cycle proteins and tumour proliferation in bladder cancer.
Method: Nuclear expression of cyclin D1, cyclin E, and p27(Kip1) was determined immunohistochemically in 52 primary transitional cell carcinomas, and the Ki-67 proliferation marker was also assessed. For each protein, the percentage of positive tumour cell nuclei was determined and analysed as a continuous variable.
Results: Advancing tumour grade and pathological stage were accompanied by increasing proliferation indices, but decreasing p27(Kip1) and cyclin D1 expression, with no significant change in cyclin E expression. Overall, cyclin D1 and E expression did not correlate with proliferation. However, in cyclin D1 overexpressing tumours (> or = 5% nuclei positive), the level of cyclin D1 expression positively correlated with proliferation. The correlation between cyclin E expression and proliferation changed from positive to negative with increasing levels of cyclin E expression, accompanied by a coordinate increase in p27(Kip1) expression. Overall, there was an inverse association between p27(Kip1) expression and proliferation. However, a subset of tumours displayed high proliferation indices despite high p27(Kip1) expression. The G1 cyclin index (sum of the level of expression of cyclins D1 and E) correlated positively with proliferation in superficial but not muscle invasive tumours. This correlation was stronger when the G1 cyclin index was adjusted for p27(Kip1) expression.
Conclusion: These findings support a role for these proteins in the proliferation, differentiation, and progression of bladder transitional cell carcinomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187355 | PMC |
http://dx.doi.org/10.1136/mp.56.6.353 | DOI Listing |
BMC Urol
January 2025
Institute of Clinical Medicine, The Second affiliated Hospital of Hainan Medical University, 368th Yehai Avenue, Haikou, Hainan, 570311, China.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India.
Aim: Odontogenesis is a complex and highly regulated biological process that involves a range of molecular mechanisms. Among these, Ki67 and Cyclin D1 are crucial cell cycle regulators that play pivotal roles in controlling cell proliferation during tooth development. This study aims to provide detailed insights into the expression patterns and functional significance of Ki67 and Cyclin D1 in tooth development.
View Article and Find Full Text PDFJ Adv Res
January 2025
Introduction: Cyclin-Dependent Kinase 8 (CDK8), a CDK family member, regulates the development of inflammatory processes through transcriptional activation. The involvement of CDK8 in osteoarthritis (OA) progression is not yet understood.
Objectives: This study aims to investigate whether CDK8, through its transcriptional regulatory functions, collaborates with NF-κB in chondrocytes to regulate the transcription of senescence-associated secretory phenotype (SASP) genes, thereby exacerbating the inflammatory microenvironment in the progression of osteoarthritis (OA), and to explore the specific mechanisms involved.
Med Oncol
January 2025
Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.
View Article and Find Full Text PDFASN Neuro
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!