Early in infection, human immunodeficiency virus type 1 (HIV-1) generally uses the CCR5 chemokine receptor (along with CD4) for cellular entry. In many HIV-1-infected individuals, viral genotypic changes arise that allow the virus to use CXCR4 (either in addition to CCR5 or alone) as an entry coreceptor. This switch has been associated with an acceleration of both CD3(+) T-cell decline and progression to AIDS. While it is well known that the V3 loop of gp120 largely determines coreceptor usage and that positively charged residues in V3 play an important role, the process of genetic change in V3 leading to altered coreceptor usage is not well understood. Further, the methods for biological phenotyping of virus for research or clinical purposes are laborious, depend on sample availability, and present biosafety concerns, so reliable methods for sequence-based "virtual phenotyping" are desirable. We introduce a simple bioinformatic method of scoring V3 amino acid sequences that reliably predicts CXCR4 usage (sensitivity, 84%; specificity, 96%). This score (as determined on the basis of position-specific scoring matrices [PSSM]) can be interpreted as revealing a propensity to use CXCR4 as follows: known R5 viruses had low scores, R5X4 viruses had intermediate scores, and X4 viruses had high scores. Application of the PSSM scoring method to reconstructed virus phylogenies of 11 longitudinally sampled individuals revealed that the development of X4 viruses was generally gradual and involved the accumulation of multiple amino acid changes in V3. We found that X4 viruses were lost in two ways: by the dying off of an established X4 lineage or by mutation back to low-scoring V3 loops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC296044 | PMC |
http://dx.doi.org/10.1128/jvi.77.24.13376-13388.2003 | DOI Listing |
Viruses
November 2024
Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India.
The biological characteristics of early transmitted/founder (T/F) variants are crucial factors for viral transmission and constitute key determinants for the development of better therapeutics and vaccine strategies. The present study aimed to generate T/F viruses and to characterize their biological properties. For this purpose, we constructed 18 full-length infectious molecular clones (IMCs) of HIV from recently infected infants.
View Article and Find Full Text PDFVet Immunol Immunopathol
December 2024
Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; Immunology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria. Electronic address:
The CD8 molecule is a cell surface receptor and well described as co-receptor on T cells, binding directly to the major histocompatibility complex class I on antigen presenting cells. CD8 antigens are comprised of two distinct polypeptide chains, the α and the β chain. In the pig, the CD8 receptor is expressed by several lymphocyte subsets, including Natural Killer cells, γδ T cells and antigen experienced CD4 αβ T cells.
View Article and Find Full Text PDFEBioMedicine
November 2024
Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:
Virol J
June 2024
U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA.
The magnitude of the HIV-1 epidemic in Nigeria is second only to the subtype C epidemic in South Africa, yet the subtypes prevalent in Nigeria require further characterization. A panel of 50 subtype G and 18 CRF02_AG Nigerian HIV-1 pseudoviruses (PSV) was developed and envelope coreceptor usage, neutralization sensitivity and cross-clade reactivity were characterized. These PSV were neutralized by some antibodies targeting major neutralizing determinants, but potentially important differences were observed in specific sensitivities (eg.
View Article and Find Full Text PDFJ Neurovirol
August 2024
Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!