Low-threshold L-type calcium channels in rat dopamine neurons.

J Neurophysiol

Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.

Published: March 2004

Ca(2+) channel subtypes expressed by dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) were studied using whole cell patch-clamp recordings and blockers selective for different channel types (L, N, and P/Q). Nimodipine (Nim, 2 microM), omega-conotoxin GVIA (Ctx, 1 microM), or omega-agatoxin IVA (Atx, 50 nM) blocked 27, 36, and 37% of peak whole cell Ca(2+) channel current, respectively, indicating the presence of L-, N-, and P-type channels. Nim blocked approximately twice as much Ca(2+) channel current near activation threshold compared with Ctx or Atx, suggesting that small depolarizations preferentially opened L-type versus N- or P-type Ca(2+) channels. N- and L-channels in DA neurons opened over a significantly more negative voltage range than those in rat dorsal root ganglion cells, recorded from using identical conditions. These data provide an explanation as to why Ca(2+)-dependent spontaneous oscillatory potentials and rhythmic firing in DA neurons are blocked by L-channel but not N-channel antagonists and suggest that pharmacologically similar Ca(2+) channels may exhibit different thresholds for activation in different types of neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01015.2003DOI Listing

Publication Analysis

Top Keywords

ca2+ channel
12
channel current
8
ca2+ channels
8
neurons
5
ca2+
5
low-threshold l-type
4
l-type calcium
4
channels
4
calcium channels
4
channels rat
4

Similar Publications

Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.

View Article and Find Full Text PDF

Targeting TRPC channels for control of arthritis-induced bone erosion.

Sci Adv

January 2025

Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.

Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Pigmentation is orchestrated by hundreds of genes involved in cellular functions going from early developmental fate of pigment cells to melanin synthesis. The Two Pore Channel 2 (TPC2) a Ca2+ and Na+ channel acidifies melanosomal pH and thus inhibits pigmentation. A young patient was recently reported with generalized hypopigmentation but uneventful ocular examination, caused by the de novo heterozygous TPCN2 variant c.

View Article and Find Full Text PDF

Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!