The sense organs of adult Drosophila, and holometabolous insects in general, derive essentially from imaginal discs and hence are adult specific. Experimental evidence presented here, however, suggests a different developmental design for the three largely gustatory sense organs located along the pharynx. In a comprehensive cellular analysis, we show that the posteriormost of the three organs derives directly from a similar larval organ and that the two other organs arise by splitting of a second larval organ. Interestingly, these two larval organs persist despite extensive reorganization of the pharynx. Thus, most of the neurons of the three adult organs are surviving larval neurons. However, the anterior organ includes some sensilla that are generated during pupal stages. Also, we observe apoptosis in a third larval pharyngeal organ. Hence, our experimental data show for the first time the integration of complex, fully differentiated larval sense organs into the nervous system of the adult fly and demonstrate the embryonic origin of their neurons. Moreover, they identify metamorphosis of this sensory system as a complex process involving neuronal persistence, generation of additional neurons and neuronal death. Our conclusions are based on combined analysis of reporter expression from P[GAL4] driver lines, horseradish peroxidase injections into blastoderm stage embryos, cell labeling via heat-shock-induced flip-out in the embryo, bromodeoxyuridine birth dating and staining for programmed cell death. They challenge the general view that sense organs are replaced during metamorphosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.00879 | DOI Listing |
J Clin Med
December 2024
Orthopaedic & Trauma Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari Aldo Moro, AOU Consorziale Policlinico, 70124 Bari, Italy.
Anterior cruciate ligament (ACL) injuries are common in athletes, but their prevalence has also increased among adults. ACL reconstruction (ACLR) is a key treatment option, with graft choice playing a critical role in recovery. The study evaluates the clinical and functional outcomes of ACLR using the Ligament Augmentation and Reconstruction System (LARS) in patients over 35 years old.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico.
Accurate synthetic image generation is crucial for addressing data scarcity challenges in medical image classification tasks, particularly in sensor-derived medical imaging. In this work, we propose a novel method using a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) and nearest-neighbor interpolation to generate high-quality synthetic images for diabetic retinopathy classification. Our approach enhances training datasets by generating realistic retinal images that retain critical pathological features.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Ophthalmic Instrumentation Development Lab, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Wilmer 233, 600 N. Wolfe St., Baltimore, MD 21287, USA.
Signal amplitudes obtained from retinal scanning depend on numerous factors. Working with polarized light to interrogate the retina, large parts of which are birefringent, is even more prone to artifacts. This article demonstrates the necessity of using normalization when working with retinal birefringence scanning signals in polarization-sensitive ophthalmic instruments.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Directorate for Railways, Nemanjina 6, 11000 Belgrade, Serbia.
The manuscript conducts a comparative analysis to assess the impact of noise on medical images using a proposed threshold value estimation approach. It applies an innovative method for edge detection on images of varying complexity, considering different noise types and concentrations of noise. Five edges are evaluated on images with low, medium, and high detail levels.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!