Protective effects of brief intra- and delayed postischemic hypothermia in a transient focal ischemia model in the neonatal rat.

Brain Res

Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, 47 New Scotland Avenue, Albany, NY 12208, USA.

Published: January 2004

Hypothermia provides neuroprotection in virtually all animal models of ischemia, including adult stroke models and the neonatal hypoxic-ischemic (HI) model. In these studies, brief periods of hypothermia are examined in a neonatal model employing transient focal ischemia in a 7-day-old rat pup. Pups underwent permanent middle cerebral artery (MCA) occlusion coupled with a temporary (1 h) occlusion of the ipsilateral common carotid artery (CCA). This study included five treatment groups: (1) normothermic (Normo)-brain temperature was maintained at 37 degrees C; (2) intraischemic hypothermia (IntraH)-28 degrees C during the 1-h ischemic period only; (3) postischemic hypothermia (PostH)-28 degrees C for the second hour of reperfusion only; (4) late-onset postischemic hypothermia (LPostH) cooled to 28 degrees C for the fifth and sixth hours of reperfusion only; and (5) Shams. After various times (3 days-6 weeks), the lesion was assessed using 2,3,5-triphenyltetrazolium chloride (TTC) or hematoxylin and eosin (H&E) stains. Intraischemic hypothermia resulted in significant protection in terms of survival, lesion size, and histology. Postischemic hypothermia was not effective in reducing lesion size early after ischemia, but significantly reduced the eventual long-term damage (2-6 weeks). Late-onset postischemic hypothermia did not reduce infarct volume. Therefore, both intraischemic and postischemic hypothermia provided neuroprotection in the neonatal rat, but with different effects on the degenerative time course. While there were no observable differences in simple behaviors or growth, all hypothermic conditions significantly reduced mortality rates. While the protection resulting from intraischemic hypothermia is similar to what is observed in other models, the degree of long-term ischemic protection observed after 1 h of postischemic hypothermia was remarkable and distinct from what has been observed in other adult or neonatal models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2003.09.065DOI Listing

Publication Analysis

Top Keywords

postischemic hypothermia
28
hypothermia
12
intraischemic hypothermia
12
transient focal
8
focal ischemia
8
neonatal rat
8
late-onset postischemic
8
lesion size
8
postischemic
7
neonatal
5

Similar Publications

Background: Induced hypothermia post-cardiac arrest is neuroprotective in animal experiments, but few high-quality studies have been performed in larger animals with human-like brains. The neuroprotective effect of postischemic hypothermia has recently been questioned in human trials. Our aim is to investigate whether hypothermia post-cardiac arrest confers a benefit compared to normothermia in large adult animals.

View Article and Find Full Text PDF

Therapeutic hypothermia (TH) provides cardioprotection from ischemia/reperfusion (I/R) injury. However, it remains unknown how TH regulates metabolic recovery. We tested the hypothesis that TH modulates PTEN, Akt, and ERK1/2, and improves metabolic recovery through mitigation of fatty acid oxidation and taurine release.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how hypothermia (H), cardioplegia (CP), and their combination (HCP) can protect heart mitochondria during myocardial ischemia-reperfusion injury.
  • Rats were divided into groups to assess cardiac function and mitochondrial changes after different treatment durations and temperatures following a period of ischemia.
  • Results show that H and HCP treatments are more effective at preserving mitochondrial integrity compared to control treatments, suggesting they enhance protection against cell death during heart injury.
View Article and Find Full Text PDF

Background: Following acute myocardial infarction (MI), irreversible damage to the myocardium can only be reduced by shortening the duration between symptom onset and revascularization. While systemic hypothermia has shown promising results in slowing pre-revascularization myocardial damage, it is resource intensive and not conducive to prehospital initiation. We hypothesized that topical neck cooling (NC), an easily implemented therapy for en route transfer to definitive therapy, could similarly attenuate myocardial ischemia-reperfusion injury (IRI).

View Article and Find Full Text PDF

In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!