The low density lipoprotein receptor-related protein (LRP) is a multifunctional cell surface receptor highly expressed in human aortic smooth muscle cells. In the present study, we used the short interfering RNA (siRNA) technique to explore the role of LRP in smooth muscle cell migration. We identified an LRP-specific siRNA that selective silences LRP expression in human aortic smooth muscle cells. As a consequence, LRP-mediated ligand degradation was significantly reduced. More important, we found that platelet-derived growth factor-dependent cell migration was inhibited in cells transfected with LRP siRNA. These results demonstrate an important role of LRP in smooth muscle cell migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(03)01272-9 | DOI Listing |
Background: Apolipoprotein C3 (apo C3) is primarily secreted by the liver and is involved in promoting sterile inflammation and organ damage under pathological conditions. Previous studies have shown that apo C3 is abundant in the plasma exosomes of patients with aortic dissection (AD), but its specific role in AD remains unclear.
Methods And Results: In vivo, adeno-associated virus was used to knock down hepatic apo C3 expression in an AD mouse model to assess the impact of liver-derived apo C3 on the development of AD.
JCI Insight
January 2025
Section of Vascular Surgery, Department of Surgery, and.
Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).
Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.
Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.
Arterioscler Thromb Vasc Biol
January 2025
Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).
Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!