We previously showed that S-adenosylmethionine (SAM) induces movement impairments similar to those observed in Parkinson's disease (PD) apparently by prenylated protein methylation; 5 kDa molecules being methylated and the symptoms being inhibited by prenylcysteine (PC) analogs. In the present study, we explore the biochemical mechanism of action of the PC analogs. N-acetylgeranylcysteine (AGC), N-acetylfarnesylcysteine (AFC), N-acetylgeranylgeranylcysteine (AGGC), farnesylthioacetic acid (FTA), farnesyl-2-ethanesulfonic acid (FTE) and farnesylsuccinic acid (FMS), but not farnesylthiotriazole (FTT) and farnesylthiolactic acid (FTL), inhibited the SAM-induced motor impairments. Incubation of the respective analogs with rat brain membranes containing prenylated protein methyltransferase (PPMTase) resulted in the methylation of AGC, AFC and AGGC. FTA, FTE, FMS and FTT, but not FTL, inhibited the enzyme activity. A single injection of the active analogs remained effective for at least 3 days against repeated injections of 1 micromol SAM. Amphetamine-induced hyperactivity in rats was inhibited by SAM but potentiated by FTE. During 60 min, the movement time for amphetamine-treated rats was 1477 s compared with 633 and 1664 s for amphetamine+SAM- and amphetamine+FTE-treated rats, respectively. The total distance for amphetamine+FTE-treated rats was 82% higher than for amphetamine. The horizontal activity was 30,728 (amphetamine), 15,430 (FTE), 18,526 (amphetamine+SAM), 41,736 (amphetamine+FTE) and 7004 (SAM) as compared to the PBS control (4726). The intricate relationship between the actions of SAM, which speeds up prenylated protein methylation and impairs movement, amphetamine, which increases synaptic dopamine levels and movement, and the PC analogs, which prevent the SAM-induced movement impairments, suggests a SAM-induced defect on dopamine signaling as the likely cause of the symptoms. The data reveal that interaction of PC analogs with PPMTase may not be an indicator of anti-PD-like activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbb.2003.08.017 | DOI Listing |
Molecules
January 2025
Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.
Inflammation has always been considered a trigger or consequence of neurodegenerative diseases, and the inhibition of inflammation in the central nervous system can effectively protect nerve cells. Several studies have indicated that various natural products inhibit neuroinflammation. Among these, Antarctic fungal metabolites have pharmacological activities and a developmental value.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2025
Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biology, Saint Louis University, St. Louis, MO 63103. Electronic address:
Miy1 is a highly conserved de-ubiquitinating enzyme in yeast with MINDY1 as its human homolog. Miy1 is known to act on K48-linked polyubiquitin chain, but its biological function is unknown. Miy1 has a putative prenylation site, suggesting it as a membrane-associated protein that may contribute to the regulation of cell signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!