Arrayed acquisition of 2D exchange NMR spectra within a single scan experiment.

J Magn Reson

Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.

Published: December 2003

We have recently demonstrated that magnetic field gradients in combination with frequency selective pulses, can be employed to collect a complete multi-dimensional NMR spectrum within a single scan. Following similar guidelines, field gradients could also be exploited to parallelize other types of NMR experiments where the final results arise from the collection and analysis of a series of time-incremented spectra. The present Communication exemplifies this concept by showing how a combination of gradients can be employed to monitor within a single continuous acquisition, a slow dynamic process which is in turn followed by systematic increments in the duration of a magnetization transfer time. Further, since 2D exchange NMR spectra can nowadays be themselves collected within one scan, the acquisition of a complete set of mixing-incremented 2D exchange patterns could be achieved within a single experiment entailing a total time of approximately 1 s.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2003.09.006DOI Listing

Publication Analysis

Top Keywords

exchange nmr
8
nmr spectra
8
single scan
8
field gradients
8
arrayed acquisition
4
acquisition exchange
4
nmr
4
single
4
spectra single
4
scan experiment
4

Similar Publications

Molecular Phosphide Complexes of Zirconium.

J Am Chem Soc

January 2025

Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States.

Molecular Zr phosphides are extremely rare, with no examples containing a one-coordinated and terminal triple-bonded phosphorus atom. We report here an isolable and relatively stable Zr phosphide complex, [(PN)Zr≡P{μ-Na(OEt)}] (), stemming from a cyclometalated Zr-hydride, [(PN)(PN')Zr(H)] (), and NaPH. Complex is prepared from two- or one-electron reductions of precursors [(PN)ZrCl] () or metastable Zr[(PN)ZrCl], respectively.

View Article and Find Full Text PDF

A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.

View Article and Find Full Text PDF

ConspectusColloidal nanocrystals are an interesting platform for studying the surface chemistry of materials due to their high surface area/volume ratios, which results in a large fraction of surface atoms. As synthesized, the surfaces of many colloidal nanocrystals are capped by organic ligands that help control their size and shape. While these organic ligands are necessary in synthesis, it is often desirable to replace them with other molecules to enhance their properties or to integrate them into devices.

View Article and Find Full Text PDF

A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.

View Article and Find Full Text PDF

The hypoxic microenvironment is crucial for tumour cell growth and invasiveness. Tumour tissue results from adaptation to reduced oxygen availability. Hypoxia first activates pro-angiogenic signals for alleviation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!