Beryllium: genotoxicity and carcinogenicity.

Mutat Res

NYU School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA.

Published: December 2003

Beryllium (Be) has physical-chemical properties, including low density and high tensile strength, which make it useful in the manufacture of products ranging from space shuttles to golf clubs. Despite its utility, a number of standard setting agencies have determined that beryllium is a carcinogen. Only a limited number of studies, however, have addressed the underlying mechanisms of the carcinogenicity and mutagenicity of beryllium. Importantly, mutation and chromosomal aberration assays have yielded somewhat contradictory results for beryllium compounds and whereas bacterial tests were largely negative, mammalian test systems showed evidence of beryllium-induced mutations, chromosomal aberrations, and cell transformation. Although inter-laboratory differences may play a role in the variability observed in genotoxicity assays, it is more likely that the different chemical forms of beryllium have a significant effect on mutagenicity and carcinogenicity. Because workers are predominantly exposed to airborne particles which are generated during the machining of beryllium metal, ceramics, or alloys, testing of the mechanisms of the mutagenic and carcinogenic activity of beryllium should be performed with relevant chemical forms of beryllium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2003.08.022DOI Listing

Publication Analysis

Top Keywords

beryllium
9
chemical forms
8
forms beryllium
8
beryllium genotoxicity
4
genotoxicity carcinogenicity
4
carcinogenicity beryllium
4
beryllium physical-chemical
4
physical-chemical properties
4
properties including
4
including low
4

Similar Publications

Nine metal complexes formed by three symmetric β-diketonates (, acetylacetonate (), 1,1,1,3,3,3-hexafluoro-acetylacetonate (), and 2,2,6,6-tetramethylheptane-3,5-dionate ()) and three metal ions (with three different coordination geometries, , Be - tetrahedral, Cu - square planar, and Pb - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study.

View Article and Find Full Text PDF

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Dissolved beryllium (< 1 kDa) mobilized as a major element in groundwater in legacy mine waste.

Environ Pollut

January 2025

Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.

Article Synopsis
  • Research on beryllium (Be) geochemistry in terrestrial environments is complicated due to its toxicity and low environmental concentrations, but high levels were found in groundwater at a Tailings Storage Facility in Sweden.
  • A study from 2016-2024 analyzed groundwater samples and identified that over 90% of dissolved Be was truly dissolved in suboxic conditions, with significant concentrations correlated with sulfate complexes at pH levels of 6.0 to 6.4.
  • The research indicated that as pH decreases, Be concentrations are likely to rise due to long-term sulfide oxidation, while secondary minerals on the tailings shore may act as temporary barriers that can limit Be mobility.
View Article and Find Full Text PDF

Utilizing the sparsity of the electronic structure problem, fragmentation methods have been researched for decades with great success, pushing the limits of ab initio quantum chemistry ever further. Recently, this set of methods has been expanded to include a fundamentally different approach called excitonic renormalization, providing promising initial results. It builds a supersystem Hamiltonian in a second-quantized-like representation from transition-density tensors of isolated fragments, contracted with biorthogonalized molecular integrals.

View Article and Find Full Text PDF

The complete conversion of dinitrogen to ammonia mediated by a side-on N-bound carbene-beryllium complex, [NHC-Be(η-N)] has been studied considering both the symmetric and unsymmetric pathways. -heterocyclic carbenes complexed with Be(η-N) moieties were considered substrates in our study. We found that two mechanistic pathways were possible for the reduction of dinitrogen to form ammonia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!