The objective was to determine whether an elevated nucleated red blood cell count at birth after perinatal depression is associated with brain injury as measured by (1) proton magnetic resonance spectroscopy and (2) abnormal neurodevelopmental outcome at 30 months of age. The nucleated red blood cell counts from the first 24 hours of life were statistically analyzed in 33 term infants enrolled in a prospective study of the value of magnetic resonance imaging for the determination of neurodevelopmental outcome after perinatal depression. Nucleated red blood cell counts were elevated in 13/33 (39%). Abnormal outcome (19/33, 54%) was associated with Score for Neonatal Acute Physiology-Perinatal Extension (P = 0.04), decreased N-acetylaspartate to choline ratio in the basal ganglia (P = 0.009), and increased lactate to choline ratio in the basal ganglia (P = 0.02), but not with cord pH, Apgar score, or nucleated red blood cell value. In a logistic regression model, increasing nucleated red blood cell counts did not increase the odds of an abnormal outcome at 30 months of age (OR 1.02, P = 0.17). In a population of neonates with perinatal depression, the nucleated red blood cell count at birth does not correlate with magnetic resonance spectroscopy or 30-month neurodevelopmental outcome. The nucleated red blood cell count should not be used as a surrogate marker for subsequent brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0887-8994(03)00266-2DOI Listing

Publication Analysis

Top Keywords

nucleated red
32
red blood
32
blood cell
32
cell counts
16
brain injury
12
cell count
12
perinatal depression
12
magnetic resonance
12
neurodevelopmental outcome
12
nucleated
8

Similar Publications

Recently, driven by a growing focus on environmental sustainability and cost-effectiveness, researchers have shown a keen interest in creating useful materials from bio-wastes, particularly for their potential applications in the biomedical field. Current research has been conducted on the impact of date seed powder (DSP) on hydroxyapatite (HA) formation, specifically in relation to the promotion of bone health and regeneration. HA is an essential component of bone tissue and plays a crucial role in maintaining bone strength and structure.

View Article and Find Full Text PDF

(1) Background: Fetal chromosomal examination is a critical component of modern prenatal testing. Traditionally, maternal serum biomarkers such as free β-human chorionic gonadotropin (Free β-HCG) and pregnancy-associated plasma protein A (PAPPA) have been employed for screening, achieving a detection rate of approximately 90% for fetuses with Down syndrome, albeit with a false positive rate of 5%. While amniocentesis remains the gold standard for the prenatal diagnosis of chromosomal abnormalities, including Down syndrome and Edwards syndrome, its invasive nature carries a significant risk of complications, such as infection, preterm labor, or miscarriage, occurring at a rate of 7 per 1000 procedures.

View Article and Find Full Text PDF

Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin- nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation.

View Article and Find Full Text PDF

PLK1 inhibition impairs erythroid differentiation.

Front Cell Dev Biol

December 2024

School of Life Sciences, Zhengzhou University, Zhengzhou, China.

Polo-like kinase 1 (PLK1), a key regulator of the G2/M phase in mitosis, is frequently overexpressed in numerous tumors. Although PLK1 inhibitors have emerged as promising therapeutic agents for cancer, their use has been linked to significant anemia in a subset of patients, yet the underlying mechanisms remain poorly understood. In this study, we utilized an human umbilical cord blood-derived CD34 cell-based erythroid differentiation system, alongside a murine model, to investigate the impact of PLK1 inhibitors on erythropoiesis.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!