The role of the pharmacy coordinating center in the DIG trial.

Control Clin Trials

Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, VA Medical Center, Albuquerque, New Mexico 87106-4180, USA.

Published: December 2003

Large simple trials (LSTs) emerged in response to the need for large sample sizes to answer important clinical questions in which treatments have a moderate effect on clinical endpoints. Between 1991 and 1996 the National Heart, Lung, and Blood Institute and the Department of Veterans Affairs (VA) Cooperative Studies Program conducted an LST entitled "Digitalis Investigation Group (DIG): Trial to Evaluate the Effect of Digitalis on Mortality in Heart Failure." The VA Cooperative Studies Program Clinical Research Pharmacy Coordinating Center served as the DIG pharmacy coordinating center (PCC). As a direct result of involvement in the DIG trial, the PCC identified the need for an increased emphasis on computerization and automated support of clinical trials, especially LSTs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0197-2456(03)00102-8DOI Listing

Publication Analysis

Top Keywords

pharmacy coordinating
12
coordinating center
12
dig trial
12
trials lsts
8
cooperative studies
8
studies program
8
role pharmacy
4
dig
4
center dig
4
trial large
4

Similar Publications

Background: Modern dietary trends have led to an increase in foods that are relatively high in n-6 polyunsaturated fatty acids (PUFAs) and low in n-3 PUFAs. We previously reported that the offspring of mother mice that consumed a diet high in n-6 linoleic acid (LA) and low in n-3 α-linolenic acid (ALA), hereinafter called the LA/ALA diet, exhibit behavioral abnormalities related to anxiety and feeding.

Objective: We currently lack a comprehensive overview of the behavioral abnormalities in these offspring, which was investigated in this study.

View Article and Find Full Text PDF

Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy.

Mol Pharm

January 2025

School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.

Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.

View Article and Find Full Text PDF

Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations.

Nat Prod Bioprospect

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.

In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro).

View Article and Find Full Text PDF

DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases.

View Article and Find Full Text PDF

Amino acid modified copper-based metal organic polyhedral with higher peroxidase activity for potassium guaiacol sulfonate detection.

Sci Rep

January 2025

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming, China.

It has been reported some nanozymes could be used as a substitute for natural enzyme to detect HO to some extent. However, the low catalytic effect of these materials limited their further application fields. Hence, to increase the catalytic activity of nanozymes was a hot research topic and many methods have been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!