A multi-center case-control study was conducted on 3398 fatally-injured drivers to assess the effect of alcohol and drug use on the likelihood of them being culpable. Crashes investigated were from three Australian states (Victoria, New South Wales and Western Australia). The control group of drug- and alcohol-free drivers comprised 50.1% of the study population. A previously validated method of responsibility analysis was used to classify drivers as either culpable or non-culpable. Cases in which the driver "contributed" to the crash (n=188) were excluded. Logistic regression was used to examine the association of key attributes such as age, gender, type of crash and drug use on the likelihood of culpability. Drivers positive to psychotropic drugs were significantly more likely to be culpable than drug-free drivers. Drivers with Delta(9)-tetrahydrocannabinol (THC) in their blood had a significantly higher likelihood of being culpable than drug-free drivers (odds ratio (OR) 2.7, 95% CI 1.02-7.0). For drivers with blood THC concentrations of 5 ng/ml or higher the odds ratio was greater and more statistically significant (OR 6.6, 95% CI 1.5-28.0). The estimated odds ratio is greater than that for drivers with a blood alcohol concentration (BAC) of 0.10-0.15% (OR 3.7, 95% CI 1.5-9.1). A significantly stronger positive association with culpability was seen with drivers positive to THC and with BAC > or =0.05% compared with BAC > or =0.05 alone (OR 2.9, 95% CI 1.1-7.7). Strong associations were also seen for stimulants, particularly in truck drivers. There were non-significant, weakly positive associations of opiates and benzodiazepines with culpability. Drivers positive to any psychoactive drug were significantly more likely to be culpable (OR 1.8, 95% CI 1.3-2.4). Gender differences were not significant, but differences were apparent with age. Drivers showing the highest culpability rates were in the under 25 and over 65 age groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0001-4575(02)00153-7 | DOI Listing |
J Health Serv Res Policy
January 2025
Associate Professor, Exeter Collaboration for Academic Primary Care, University of Exeter Medical School, Exeter, UK.
Objective: Digital services in primary care are becoming more common, yet access to and use of services can create inequities. Our aim was to explore the drivers, priorities, and evolving policy context influencing digital facilitation in primary care as reported by national, regional and local level stakeholders in England.
Methods: We conducted online semi-structured qualitative interviews with stakeholders, including those in NHS England organisations, local commissioners for health care, statutory and third sector organisations, those working within the research community, and digital platform providers.
Science
January 2025
Department of Geoinformatics, University of Kashmir, Srinagar, India.
On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River.
View Article and Find Full Text PDFScience
January 2025
Wildlife Institute of India, Dehradun, India.
Recovery of large yet ecologically important carnivores poses a formidable global challenge. Tiger () recovery in India, the world's most populated region, offers a distinct opportunity to evaluate the socio-ecological drivers of megafauna recovery. Tiger occupancy increased by 30% (at 2929 square kilometers per year) over the past two decades, leading to the largest global population occupying ~138,200 square kilometers.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
July 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.
View Article and Find Full Text PDFGastric Cancer
January 2025
Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
Background: Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment.
Methods: We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!