A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that the relationship between crash count and traffic volume is non-linear; consequently, a simple crash rate computed as the ratio of crash count to volume is not proper for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4) multi-vehicle intersecting, and define candidate exposure measures for each that we hypothesize will be linear with respect to each crash type. This paper describes initial investigation using crash and physical characteristics data for highway segments in Michigan from the Highway Safety Information System (HSIS). We use zero-inflated-Poisson (ZIP) modeling to estimate models for predicting counts for each of the above crash types as a function of the daily volume, segment length, speed limit and roadway width. We found that the relationship between crashes and the daily volume (AADT) is non-linear and varies by crash type, and is significantly different from the relationship between crashes and segment length for all crash types. Our research will provide information to improve accuracy of crash predictions and, thus, facilitate more meaningful comparison of the safety record of seemingly similar highway locations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0001-4575(02)00148-3 | DOI Listing |
J Acoust Soc Am
January 2025
Naval Group Research, 199 av. Pierre-Gilles de Gennes, Ollioulles, 83190 France.
The theory of similitudes provides simple laws by which the response of one system (usually of small size) can be used to predict the response of another system (usually larger). This paper establishes the exact conditions and laws of similitude for the vibrations and acoustic radiation of a panel immersed in a heavy fluid and excited by a turbulent boundary layer. Previous work on vibroacoustic similitude had not considered the problem of a panel radiating in heavy fluid, for which the radiation impedance of the structure must be scaled.
View Article and Find Full Text PDFCureus
December 2024
Department of Colorectal Surgery, Liverpool Hospital, Sydney, AUS.
Blunt abdominal trauma frequently results in visceral injury to either solid or hollow organs; however, injury to the gallbladder is rare. This is most likely due to the anatomical position of the gallbladder, which is well-insulated posterior to the liver and rib cage. Gallbladder injuries can be in the form of avulsion, contusion, or laceration.
View Article and Find Full Text PDFPLoS One
January 2025
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China.
This study tried to focus on the older drivers' group and explore the impact factors of injury severity involving older drivers from geo-spatial analysis. To reach the goal, a spatial analysis was proposed employing geographic information systems (GIS) with a case study application to two counties in Nevada. First, crash clusters were explored using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) approach to investigate the spatial crash pattern for older drivers, and determine high risk locations of injury severity.
View Article and Find Full Text PDFAm J Forensic Med Pathol
January 2025
From the Department of Pathology, University of Michigan, Ann Arbor, MI.
Pedestrian and bicyclist fatalities have increased over the past decade in the United States. Factors proposed to explain this increase include the increased popularity of larger passenger vehicles, road design to accommodate faster-moving traffic, and poor road infrastructure. We analyzed a series of 102 pedestrian and bicyclist fatalities to determine which factors were involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!