AI Article Synopsis

  • The study investigates the role of ultradian protein synthesis rhythms as indicators of cooperation among liver cells (hepatocytes) in different culture conditions.
  • Phenylephrine and a specific compound (2,5-di(tertiary-butyl)-1,4-benzohydroquinone) were found to stimulate cooperative behavior in sparse cultures by increasing intracellular calcium levels ([Ca(2+)](cyt)).
  • The experiment shows that disrupting calcium signaling with BAPTA-AM abolished the protein synthesis rhythm, highlighting the importance of calcium and gangliosides (like GM1) in synchronizing cell activities and modulating protein metabolism.

Article Abstract

Ultradian protein synthesis rhythm was used as a marker of cell cooperation in synchronous dense and non-synchronous sparse hepatocyte cultures. Phenylephrine (2 microM, 2 min), an alpha (1)-adrenoreceptor agonist, which exerts [Ca(2+)](cyt)elevation from intracellular stores, affected protein synthesis rhythm in sparse cultures, i.e. initiated cooperative activity of the cells. The same effect was produced by 2,5-di(tertiary-butyl)-1,4-benzohydroquinone (10 microM, 2 min), which increases [Ca(2+)](cyt)by a non-receptor pathway. Pretreatment of dense cultures with the intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'- tetraacetic acid (acetoxymethyl) ester (BAPTA-AM) at 10-20 microM for, 30-60 min resulted in loss of the rhythm of protein synthesis, i.e. loss of cooperative activity between the cells. The medium conditioned by control dense cultures initiated rhythm in sparse cultures, whereas the conditioned medium of cultures pretreated with BAPTA-AM did not. [Ca(2+)](cyt)increase is known to occur with monosialoganglioside GM1 treatment. By ELISA estimation, the GM1 content in 3 h conditioned medium was similar in control dense cultures to that in cultures pretreated with BAPTA-AM. Bearing in mind data on the Ca(2+)-dependence of vesicle formation and shedding, the conditioned medium was separated by 150000 g centrifugation to supernatant containing monomers and micelles, and a pellet containing vesicular form of gangliosides. Only the latter initiated cooperative activity of the cells of sparse cultures. These cultures were also synchronized by GM1-containing liposomes at lower concentrations than added free GM1, 0.0003 and 0.06 microM respectively. Thus, GM1 and calcium are both involved in cell-cell synchronization. Activation of gangliosides, including GM1 and elevation of [Ca(2+)](cyt,)is known to lead to changes of protein kinase activity and protein phosphorylation resulting in modulation of oscillations in protein metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellbi.2003.07.006DOI Listing

Publication Analysis

Top Keywords

protein synthesis
12
sparse cultures
12
cooperative activity
12
activity cells
12
dense cultures
12
conditioned medium
12
cultures
11
hepatocyte cultures
8
synthesis rhythm
8
microm min
8

Similar Publications

Purpose Of Review: The human circadian system regulates several physiological processes, including metabolism, which becomes significantly disrupted during critical illness. The common use of 24-h continuous nutrition support feeding in the intensive care unit (ICU) may further exacerbate these disruptions; this review evaluates recent evidence comparing continuous and intermittent feeding schedules in critically ill adults.

Recent Findings: Research comparing different feeding schedules in critically ill adults remains limited.

View Article and Find Full Text PDF

Plant chloroplasts store starch during the day, which acts as a source of carbohydrates and energy at night. Starch granule initiation relies on the elongation of malto-oligosaccharide primers. In Arabidopsis thaliana, PROTEIN TARGETING TO STARCH 2 (PTST2) and STARCH SYNTHASE 4 (SS4) are essential for the selective binding and elongation of malto-oligosaccharide primers, respectively, and very few granules are initiated in their absence.

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

Background: Postoperative cognitive dysfunction (POCD) is associated with an increased risk of dementia and may lead to chronic neurodegeneration. The utilization of intraoperative Transcutaneous Electrical Acupoint Stimulation (TEAS) in conjunction with anesthesia is expected to become an effective preventive measure for POCD in clinical practice.

Methods: We conducted a comprehensive literature review focusing on the use of TEAS in the prevention of POCD during surgical anesthesia.

View Article and Find Full Text PDF

Growing evidence suggests that ribosomes selectively regulate translation of specific mRNA subsets. Here, quantitative proteomics and cryoelectron microscopy demonstrate that poxvirus infection does not alter ribosomal subunit protein (RP) composition but skews 40S rotation states and displaces the 40S head domain. Genetic knockout screens employing metabolic assays and a dual-reporter virus further identified two RPs that selectively regulate non-canonical translation of late poxvirus mRNAs, which contain unusual 5' poly(A) leaders: receptor of activated C kinase 1 (RACK1) and RPLP2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!