Populations of many phloem-feeding aphid species in temperate regions increase exponentially in early summer and then 'disappear', usually over a time-scale of a few days, in July. To understand these dynamics, empirical investigation of the causes and modelling of the processes underlying population change are required. Numbers of the aphids Myzus persicae(Sulzer) and Macrosiphum euphorbiae (Thomas), monitored over three years in commercial potato fields in the UK, increased to a maximum of 2-2.5 per leaflet on 16 July in 1999 and 2001, and then declined to < 0.25 per leaflet by 26 July. In 2000, aphid numbers remained very low (< 0.25 per leaflet) throughout the season. The onset of the crash in aphid numbers (16-19 July in 1999 and 2001) was consistently associated with changes in the phloem amino acid composition of potato leaflets. Natural enemies, including syrphids, parasitoids, coccinellids, chrysopids and entomopathogenic fungi, increased in abundance throughout the sampling period. The incidence of winged emigrant aphids prior to the crash was low (< 10%). Experimental manipulation during 2001 demonstrated that, during the crash period, the fecundity of aphids (caged on leaves to exclude natural enemies) was depressed by 25-45% relative to earlier in the season, and that presence of natural enemies reduced aphid numbers by up to 68%. Using these data, an excitable medium model was constructed, which provided a robust description of aphid population dynamics in terms of plant development-induced changes in aphid fecundity and temporal change in natural enemy pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1079/ber2003252 | DOI Listing |
Ecol Evol
January 2025
Department of Biology, Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan.
Aphids are observed on various plant species, with most aphids feeding downward on stems. In this study, I studied the variations in feeding postures of aphids and their mechanisms. My field observations revealed that the majority of individuals from most species fed facing downward, or more precisely, towards the roots.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, National Demonstration Center for Experimental Grassland Science Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China. Electronic address:
Global warming and extremely high temperatures affect insect survival and distribution. In this study, we characterized the gene expression profiles of red (PAR) and green (PAG) morphs of the pea aphid (Acyrthosiphon pisum) at three high temperatures (30 °C, 36 °C, and 38 °C) and three treatment durations (6 h, 12 h, and 24 h) by high-throughput sequencing. Both PARs and PAGs increased the number of significantly differentially expressed genes as temperature and treatment duration increased, particularly for genes associated with stress resistance, lipid metabolism, cuticular protein expression, and the initiation of various regulatory mechanisms.
View Article and Find Full Text PDFPlant Dis
December 2024
ICAR - Indian Institute of Wheat and Barley Research, Karnal, Haryana, India;
Guar or cluster bean (Cyamopsis tetragonoloba L.) is a leguminous crop well-suited for cultivation in arid and semi-arid regions. India accounts for 90% of world's guar production.
View Article and Find Full Text PDFElife
December 2024
Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.
Understanding the genomic basis of natural variation in plant pest resistance is an important goal in plant science, but it usually requires large and labor-intensive phenotyping experiments. Here, we explored the possibility that non-target reads from plant DNA sequencing can serve as phenotyping proxies for addressing such questions. We used data from a whole-genome and -epigenome sequencing study of 207 natural lines of field pennycress () that were grown in a common environment and spontaneously colonized by aphids, mildew, and other microbes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
Winged aphids develop more sensitive olfaction than the wingless phenotype to identify potential habitat from afar. Two types of olfactory sensilla, primary rhinarium (PRh) and secondary rhinarium (SRh) are responsible for aphid olfactory perception, of which, SRh is involved in the perception of both E-β-farnesene (EBF) and plant volatiles. Odorant binding proteins (OBPs) play a vital role in the response of insect olfactory nerves located in the rhinarium to external odor stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!