Mechanism of mitochondrial dysfunction in diabetic sensory neuropathy.

J Peripher Nerv Syst

School of Biological Sciences, University of Manchester, Manchester, UK.

Published: December 2003

Symmetrical sensory polyneuropathy, the most common form of diabetic neuropathy in humans, is associated with a spectrum of structural changes in peripheral nerve that includes axonal degeneration, paranodal demyelination, and loss of myelinated fibers--the latter probably the result of a dying-back of distal axons. Mitochondrial dysfunction has recently been proposed as an etiological factor in this degenerative disease of the peripheral nervous system. Lack of neurotrophic support has been proposed as a contributing factor in the etiology of diabetic neuropathy based on studies in animal models of Type I diabetes. We have recently demonstrated that insulin and neurotrophin-3 (NT-3) modulate mitochondrial membrane potential in cultured adult sensory neurons. We therefore tested the hypothesis that diabetes-induced mitochondrial dysfunction is caused by impairments in neurotrophic support. We have used real-time fluorescence video microscopy to analyze mitochondrial membrane potential in cultured adult sensory neurons isolated from normal and diabetic rats. Diabetes caused a significant loss of mitochondrial membrane potential in all sub-populations of sensory neurons which can be prevented by in vivo treatment with insulin or NT-3. The mechanism of insulin and NT-3-dependent modulation of mitochondrial membrane potential involves the activation of the phosphoinositide 3 kinase (PI 3 kinase) pathway. Downstream targets of PI 3 kinase, such as Akt and the transcription factor cAMP response element-binding protein (CREB), are activated by insulin and NT-3 and regulate sensory neuron gene expression. These alterations in gene expression modulate critical components of metabolite pathways and the electron transport chain associated with the neuronal mitochondrion. Our results show that in adult sensory neurons, treatment with insulin can elevate the input of reducing equivalents into the mitochondrial electron transport chain, which leads to greater mitochondrial membrane polarization and enhanced ATP synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1085-9489.2003.03028.xDOI Listing

Publication Analysis

Top Keywords

mitochondrial membrane
20
membrane potential
16
sensory neurons
16
mitochondrial dysfunction
12
adult sensory
12
diabetic neuropathy
8
mitochondrial
8
neurotrophic support
8
potential cultured
8
cultured adult
8

Similar Publications

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Objective: Long-term management of people living with HIV (PLWHs) often relies on CD4 T cell counts for assessing immune recovery, yet a single metric offers limited information. This study aimed to explore the association between the CD4/CD8 ratio and T lymphocyte activities in PLWHs.

Methods: 125 PLWHs and 31 HIV-uninfected controls (UCs) were enrolled and categorized into four groups based on their CD4/CD8 ratios: extremely low ratio (ELR) group: 0.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!