Many of us recognize that some individuals seem "gifted" in sporting ability. We may also have noted the association of such elite performance with past parental success, recognizing intuitively the role of inherited traits. With the expansion of molecular biology and associated technologies, we now find ourselves better able to explore these genetic influences. This article examines the role of the renin-angiotensin system in regulating physical performance, based on data arising from candidate gene-association studies. In particular, the association of angiotensin-converting enzyme genotype with performance-related phenotypes will be addressed. Finally, we will briefly discuss the applicability of this data to disease states such as heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/bst0311286 | DOI Listing |
Am J Ther
January 2025
Department of Interventional Cardiology, Queen Elizabeth Hospital, Birmingham, United Kingdom.
Objectives: This clinical study assessed the three-year, long-term effects of esaxerenone, a non-steroidal aldosterone receptor blocker, on Japanese patients with type 2 diabetes, diabetic kidney disease, and hypertension who were receiving renin-angiotensin system inhibitors.
Materials And Methods: Data from a computerized diabetic care database were used to retrospectively compare esaxerenone users (Group A) with non-esaxerenone users (Group B). Propensity score weighting was applied to Group B.
Front Cardiovasc Med
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
Renal ischaemia due to renal artery stenosis produces two differing responses - a juxtaglomerular hypertensive response and cortical renal dysfunction. The reversibility of renal impairment is not predictable, and thus renal revascularisation is controversial. This study aims to test the hypothesis that the hypertensive response to renal ischaemia reflects viable renal parenchyma, and thus could be used to predict the recovery in renal function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!