The L intermediate in the proton-motive photocycle of bacteriorhodopsin is the starting state for the first proton transfer, from the Schiff base to Asp85, in the formation of the M intermediate. Previous FTIR studies of L have identified unique vibration bands caused by the perturbation of several polar amino acid side chains and several internal water molecules located on the cytoplasmic side of the retinylidene chromophore. In the present FTIR study we describe spectral features of the L intermediate in D(2)O in the frequency region which includes the N-D stretching vibrations of the backbone amides. We show that a broad band in the 2220-2080 cm(-1) region appears in L. By use of appropriate (15)N labeling and mutants, the lower frequency side of this band in L is assigned to the amides of Lys216 and Gly220. These amides are coupled to each other, and interact with Thr46 and Val49 in helix B and Asp96 in helix C via weakly H-bonding water molecules that exhibit O-D stretching vibrations at 2621 and 2605 cm(-1). These water molecules are part of a hydrogen-bonded network characteristic of L which includes other water molecules located closer to the chromophore that exhibit an O-D stretching vibration at 2589 cm(-1). This structure, extending from the Schiff base to the internal proton donor Asp96, stabilizes L and affects the L-to-M transition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0301542DOI Listing

Publication Analysis

Top Keywords

water molecules
16
schiff base
12
hydrogen-bonded network
8
cytoplasmic side
8
molecules located
8
stretching vibrations
8
exhibit o-d
8
o-d stretching
8
water-mediated hydrogen-bonded
4
network cytoplasmic
4

Similar Publications

Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

A ladder-type organic molecule with pseudocapacitive properties enabling superior electrochemical desalination.

Mater Horiz

January 2025

Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.

The availability of clean water is fundamental for maintaining sustainable environments and human ecosystems. Capacitive deionization offers a cost-effective, environmentally friendly, and energy-efficient solution to meet the rising demand for clean water. Electrode materials based on pseudocapacitive adsorption have attracted significant attention in capacitive deionization due to their relatively high desalination capacity.

View Article and Find Full Text PDF

Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2.

Nucleic Acids Res

December 2024

Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.

The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

Background: Paternal preconception alcohol exposure affects fetal development; however, it is largely unknown about the influences on offspring vasculature and mechanisms.

Methods: Offspring born form paternal rats treated with alcohol or water before pregnant was raised until 3 months of age. Vessel tone of mesenteric arteries was detected using myograph system; whole-cell calcium channel current in smooth muscle cells was tested using patch-clamp; molecule expressions were detected with real-time PCR, western blotting, and Dihydroethidium (DHE); DNA methylations were determined using targeted bisulfate sequencing assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!