Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The antioxidant properties of simple carbohydrates were studied in a chemical system. Hydroxyl radicals generated by a Fenton reaction induce damage on simple carbohydrates with a consequent free radical scavenging activity. Carbohydrate activities were measured by different methods as spin-trapping of hydroxyl radical and electron paramagnetic resonance detection and 1,1-diphenyl-2-picrylhydrazyl quenching. Carbohydrate damage was evaluated in a Fenton system by measuring the reactive substances to thiobarbituric acid, by their decreased detection with an HPLC test, and by a gas chromatographic determination of formic acid from sugar oxidation. Different intensities of damage and scavenging were found according to molecular structure, and some hyphotheses on the carbohydrate action against free radicals were attempted. The assayed disaccharides were shown to be more active toward and less damaged by hydroxyl radical than monosaccharides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf030172q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!