New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus Bio249.

J Nat Prod

Department of Organic Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany.

Published: November 2003

Several bis- and tris-indole derivatives were isolated from a North Sea bacterium that was closely related to Vibrio parahaemolyticus (98% homology). 1,1,3-Tris(3-indolyl)butane (3) is a new compound, and 3,3-bis(3-indolyl)butane-2-one (1a), arundine (1b), and 1,1,1-tris(3-indolyl)methane (2a) were isolated from a microorganism for the first time here. Additionally, many other known compounds were obtained from the ethyl acetate extract of the culture. Their structures were established on the basis of various spectral data, and their origin is discussed. All compounds were inactive against a range of bacteria and fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np030288gDOI Listing

Publication Analysis

Top Keywords

north sea
8
sea bacterium
8
vibrio parahaemolyticus
8
indole alkaloids
4
alkaloids north
4
bacterium vibrio
4
parahaemolyticus bio249
4
bio249 bis-
4
bis- tris-indole
4
tris-indole derivatives
4

Similar Publications

De-novo Genome Assembly of the Edwardsiid Anthozoan Edwardsia elegans.

G3 (Bethesda)

January 2025

Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28223.

Cnidarians (sea anemones, corals, hydroids, and jellyfish) are a key outgroup for comparisons with bilaterial animals to trace the evolution of genomic complexity and diversity within the animal kingdom, as they separated from most other animals 100s of millions of years ago. Cnidarians have extensive diversity, yet the paucity of genomic resources limits our ability to compare genomic variation between cnidarian clades and species. Here we report the genome for Edwardsia elegans, a sea anemone in the most specious genus of the family Edwardsiidae, a phylogenetically important family of sea anemones that contains the model anemone Nematostella vectensis.

View Article and Find Full Text PDF

Central Asia is an ecologically fragile arid zone and a typical mixed salt‒sand region. The socioeconomic and ecological problems attributed to the shrinking of the Aral Sea in Central Asia are notable concerns within the international community. In this study, the characteristics of salt dust aerosols from the Aral Sea were analysed to explore their interannual variation characteristics and analyse the spatial and temporal distributions of salt dust sources and transport and dispersion pathways.

View Article and Find Full Text PDF

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

This study examines how southern wintering areas may contribute to organochlorine (OCs) loads in arctic seabirds during breeding. Light-sensitive geolocators (GLS loggers) were deployed on Arctic skuas (Stercorarius parasiticus) in one high arctic and two subarctic colonies. Hexcahlorobenzene (HCB), Chlordanes, Mirex, p, p'-dichlorodiphenyldichloro- ethylene (p, p'-DDE), and Polychlorinated biphenyls (PCBs) were measured in the blood of breeding adults at the nest (58 individuals, a total of 128 samples) in northern Norway and Svalbard between 2009 and 2015.

View Article and Find Full Text PDF

The European eel (Anguilla anguilla L.) exhibits a remarkable phenotypic plasticity by occupying both marine and freshwater habitats and transitional areas in between. Because these habitats are characterized by different food sources with different fatty acid compositions, it remains unclear how eels from different habitats obtain essential long-chain polyunsaturated fatty acids (LC-PUFAs) to integrate in their lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!