Microsatellite markers derived from simple sequence repeats have been useful in studying a number of human pathogens, including the human malaria parasite Plasmodium falciparum. Genetic markers for P. vivax would likewise help elucidate the genetics and population characteristics of this other important human malaria parasite. We have identified a locus in a P. vivax telomeric clone that contains simple sequence repeats. Primers were designed to amplify this region using a two-step semi-nested polymerase chain reaction protocol. The primers did not amplify template obtained from non-infected individuals, nor DNA from primates infected with the other human malaria parasites (P. ovale, P. malariae, or P. falciparum). The marker was polymorphic in P. vivax-infected field isolates obtained from Papua New Guinea, Indonesia and Guyana. This microsatellite marker may be useful in genetic and epidemiologic studies of P. vivax malaria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728893 | PMC |
Globally, an estimated 2.1 billion malaria cases and 11.7 million malaria deaths were averted in the period 2000-2022.
View Article and Find Full Text PDFOne Health
June 2025
Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Medical Teaching Institution (MTI) Hayatabad Medical Complex, Peshawar, PAK.
Background: Malaria and dengue are significant mosquito-borne diseases prevalent in tropical and subtropical climates, with increasing reports of co-infections. This study aimed to determine the frequency, patterns, and risk factors of these co-infections in Peshawar.
Methods: A cross-sectional study was conducted from June to December 2023 in three tertiary care hospitals in Peshawar.
J Biomed Opt
February 2025
National Institute of Standards and Technology, Applied Physics Division, Boulder, Colorado, United States.
Significance: Developments of anti-gametocyte drugs have been delayed due to insufficient understanding of gametocyte biology. We report a systematic workflow of data processing algorithms to quantify changes in the absorption spectrum and cell morphology of single malaria-infected erythrocytes. These changes may serve as biomarkers instrumental for the future development of antimalarial strategies, especially for anti-gametocyte drug design and testing.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!