Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Actinobacillus actinomycetemcomitans strain 310-TR produces fimbriae and forms a tight biofilm in broth cultures, without turbid growth. The fimbriae-deficient mutant 310-DF, constructed in this study, was grown as a relatively fragile biofilm at the bottom of a culture vessel. Scanning electron microscopy revealed that on glass coverslips, 310-TR formed tight and spherical microcolonies, while 310-DF produced looser ones. These findings suggest that fimbriae are not essential for the surface-adherent growth but are required for enhancing cell-to-surface and cell-to-cell interactions to stabilize the biofilm. Treatment of the 310-DF biofilm with either sodium metaperiodate or DNase resulted in significant desorption of cells from glass surfaces, indicating that both carbohydrate residues and DNA molecules present on the cell surface are also involved in the biofilm formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1348-0421.2003.tb03454.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!