Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Humans as well as other mammals experience an aging-related decline in drug metabolism as well as a diminution in growth hormone secretion. In the case of rats, these events are more pronounced in senescent males, whose expression of male-specific isoforms of cytochrome P450, the major drug-metabolizing enzymes and constituting approximately 60-70% of the total cytochrome P450 in male rat liver, is completely suppressed, whereas female-dependent isoforms are remarkably induced to female-like levels. Overlooked in these independently reported studies is the fact that "signals" inherent in the masculine episodic and female continuous growth hormone profiles regulate expression and/or suppression of the dozen or so sex-dependent cytochrome P450 isoforms in rat liver. Whereas previous studies identified profound reductions in the pulse amplitudes of the masculine growth hormone profile as the cause for the diminished hormone secretion during aging, pulse heights are not recognized by the cytochromes as regulatory signals. Instead, we have shown that just a nominal secretion of growth hormone during the usual growth hormone-devoid interpulse period in the masculine episodic profile can explain the complete repression of male-specific CYP2C11, CYP3A2, and CYP2A2 and induction of female-dependent CYP2C12, CYP2C6, and CYP2A1 observed in senescent male rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC299965 | PMC |
http://dx.doi.org/10.1073/pnas.2434273100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!