Purpose: The purpose of the present study is to determine the role of K+ channel activity as an early event in UV-induced corneal epithelial cell apoptosis.
Method: Both cell-attached and nystatin-perforated patch-clamping were performed to record K+ channel activity in rabbit corneal epithelial (RCE) and primary cultured rabbit corneal epithelial (PRCE) cells exposed to UV irradiation. On exposure of corneal epithelial cells or intact corneas to UV-C irradiation or treatment of corneal epithelial cells with etoposide, cell apoptosis was determined by DNA fragmentation, ethidium bromide-acridine orange nuclear stain and TdT-mediated dUTP nick-end labeling (TUNEL).
Results: In the present study, UV-irradiation-induced corneal epithelial cell apoptosis through activation of a K+ channel in the cell membrane was an early event in response to UV irradiation. UV-C irradiation (42 microJ/cm(2)) activated robust K+ channel activity in RCE and PRCE cells at both the single-channel and whole-cell levels, when measured with the cell-attached and nystatin-perforated patch clamps, respectively. Suppression of UV-irradiation-induced K+ channel activity with the specific K+ channel blocker 4-aminopurydine (4-AP) prevented UV-irradiation-induced apoptosis in the RCE and PRCE cells, loss of the superficial layer of corneal epithelium, and apoptosis in the basal layer corneal epithelium. However, suppression of K+ channel activity did not protect RCE and PRCE cells from etoposide, a topoisomerase II inhibitor, which induced cell death by bypassing the membrane. Furthermore, application of valinomycin, a K+ ionophore, to mimic the effect of mass activation of the K+ channel in RCE and PRCE cells caused cell apoptosis.
Conclusions: The results indicate that UV irradiation induces superactivity of K+ channels in the membrane is an early event mediating signaling transduction and resulting in corneal epithelial cell death in response to UV irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.03-0590 | DOI Listing |
BMC Ophthalmol
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
Background: Herpes simplex keratitis (HSK) is a recurrent inflammatory disease of cornea primarily initiated by type I herpes simplex virus infection of corneal epithelium. However, early diagnosis of HSK remains challenging due to the lack of specific biomarkers. This study aims to identify biomarkers for HSK through tear metabolomics analysis between HSK and healthy individuals.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States.
Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.
View Article and Find Full Text PDFDrugs
January 2025
Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD, UK.
Neurotrophic keratitis is a rare eye condition characterised by reduced or absent corneal sensation. This leads to impaired corneal healing through a loss of protective mechanisms such as blinking. The cornea becomes vulnerable to persistent epithelial defects, ulceration, infection and ultimately, vision loss or loss of the eye.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:
In this study, we aimed to develop ion-responsive and biocompatible alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan (i.e., wound healing agent) delivery and corneal abrasion (CA) treatment.
View Article and Find Full Text PDFInt J Pharm
January 2025
National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China. Electronic address:
Maintaining the clarity of the cornea is crucial for optimal vision. Corneal scarring (CS), resulting from corneal inflammation, trauma, or surgery, can lead to a reduction in corneal transparency and visual impairment. While corneal transplantation is the primary method for restoring vision, the limited availability of corneal donor presents a significant challenge on a global scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!