The subunits of the dihydrolipoyl acetyltransferase (E2) component of mammalian pyruvate dehydrogenase complex can form a 60-mer via association of the C-terminal I domain of E2 at the vertices of a dodecahedron. Exterior to this inner core structure, E2 has a pyruvate dehydrogenase component (E1)-binding domain followed by two lipoyl domains, all connected by mobile linker regions. The assembled core structure of mammalian pyruvate dehydrogenase complex also includes the dihydrolipoyl dehydrogenase (E3)-binding protein (E3BP) that binds the I domain of E2 by its C-terminal I' domain. E3BP similarly has linker regions connecting an E3-binding domain and a lipoyl domain. The composition of E2.E3BP was thought to be 60 E2 plus approximately 12 E3BP. We have prepared homogenous human components. E2 and E2.E3BP have s(20,w) values of 36 S and 31.8 S, respectively. Equilibrium sedimentation and small angle x-ray scattering studies indicate that E2.E3BP has lower total mass than E2, and small angle x-ray scattering showed that E3 binds to E2.E3BP outside the central dodecahedron. In the presence of saturating levels of E1, E2 bound approximately 60 E1 and maximally sedimented 64.4 +/- 1.5 S faster than E2, whereas E1-saturated E2.E3BP maximally sedimented 49.5 +/- 1.4 S faster than E2.E3BP. Based on the impact on sedimentation rates by bound E1, we estimate fewer E1 (approximately 12) were bound by E2.E3BP than by E2. The findings of a smaller E2.E3BP mass and a lower capacity to bind E1 support the smaller E3BP substituting for E2 subunits rather than adding to the 60-mer. We describe a substitution model in which 12 I' domains of E3BP replace 12 I domains of E2 by forming 6 dimer edges that are symmetrically located in the dodecahedron structure. Twelve E3 dimers were bound per E248.E3BP12 mass, which is consistent with this model.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M308172200DOI Listing

Publication Analysis

Top Keywords

pyruvate dehydrogenase
16
mammalian pyruvate
12
dehydrogenase complex
12
e3-binding protein
8
c-terminal domain
8
core structure
8
domain lipoyl
8
linker regions
8
e2e3bp
8
small angle
8

Similar Publications

The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.

View Article and Find Full Text PDF

Calcineurin inhibitors (CNIs) are indispensable immunosuppressants for transplant recipients and patients with autoimmune diseases, but chronic use causes nephrotoxicity, including kidney fibrosis. Why inhibiting calcineurin, a serine/threonine phosphatase, causes kidney fibrosis remains unknown. We performed single-nucleus RNA sequencing of the kidney from a chronic CNI nephrotoxicity mouse model and found an increased proportion of injured proximal tubule cells, which exhibited altered expression of genes associated with oxidative phosphorylation, cellular senescence and fibrosis.

View Article and Find Full Text PDF

In depth profiling of dihydrolipoamide dehydrogenase deficiency in primary patients fibroblasts reveals metabolic reprogramming secondary to mitochondrial dysfunction.

Mol Genet Metab Rep

March 2025

The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.

Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.

View Article and Find Full Text PDF

Purification and characterization of a thermophilic NAD-dependent lactate dehydrogenase from Moorella thermoacetica.

FEBS Open Bio

January 2025

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.

Oxidation of lactate under anaerobic dark fermentative conditions poses an energetic problem. The redox potential of the lactate/pyruvate couple is too electropositive to reduce the physiological electron carriers NAD(P) or ferredoxin. However, the thermophilic, anaerobic, and acetogenic model organism Moorella thermoacetica can grow on lactate but was suggested to have a NAD-dependent lactate dehydrogenase (LDH), based on enzyme assays in cell-free extract.

View Article and Find Full Text PDF

Generation of a PDK-1 knockout human embryonic stem cell line by CRISPR/(WAe009-A-2K) Cas9 editing.

Stem Cell Res

December 2024

Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:

Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!